Autoregressive Predictive Coding: An unsupervised autoregressive model for speech representation learning

Overview

Autoregressive Predictive Coding

This repository contains the official implementation (in PyTorch) of Autoregressive Predictive Coding (APC) proposed in An Unsupervised Autoregressive Model for Speech Representation Learning.

APC is a speech feature extractor trained on a large amount of unlabeled data. With an unsupervised, autoregressive training objective, representations learned by APC not only capture general acoustic characteristics such as speaker and phone information from the speech signals, but are also highly accessible to downstream models--our experimental results on phone classification show that a linear classifier taking the APC representations as the input features significantly outperforms a multi-layer percepron using the surface features.

Dependencies

  • Python 3.5
  • PyTorch 1.0

Dataset

In the paper, we used the train-clean-360 split from the LibriSpeech corpus for training the APC models, and the dev-clean split for keeping track of the training loss. We used the log Mel spectrograms, which were generated by running the Kaldi scripts, as the input acoustic features to the APC models. Of course you can generate the log Mel spectrograms yourself, but to help you better reproduce our results, here we provide the links to the data proprocessed by us that can be directly fed to the APC models. We also include other data splits that we did not use in the paper for you to explore, e.g., you can try training an APC model on a larger and nosier set (e.g., train-other-500) and see if it learns more robust speech representations.

Training APC

Below we will follow the paper and use train-clean-360 and dev-clean as demonstration. Once you have downloaded the data, unzip them by running:

xz -d train-clean-360.xz
xz -d dev-clean.xz

Then, create a directory librispeech_data/kaldi and move the data into it:

mkdir -p librispeech_data/kaldi
mv train-clean-360-hires-norm.blogmel librispeech_data/kaldi
mv dev-clean-hires-norm.blogmel librispeech_data/kaldi

Now we will have to transform the data into the format loadable by the PyTorch DataLoader. To do so, simply run:

# Prepare the training set
python prepare_data.py --librispeech_from_kaldi librispeech_data/kaldi/train-clean-360-hires-norm.blogmel --save_dir librispeech_data/preprocessed/train-clean-360-hires-norm.blogmel
# Prepare the valication set
python prepare_data.py --librispeech_from_kaldi librispeech_data/kaldi/dev-clean-hires-norm.blogmel --save_dir librispeech_data/preprocessed/dev-clean-hires-norm-blogmel

Once the program is done, you will see a directory preprocessed/ inside librispeech_data/ that contains all the preprocessed PyTorch tensors.

To train an APC model, simply run:

python train_apc.py

By default, the trained models will be put in logs/. You can also use Tensorboard to trace the training progress. There are many other configurations you can try, check train_apc.py for more details--it is highly documented and should be self-explanatory.

Feature extraction

Once you have trained your APC model, you can use it to extract speech features from your target dataset. To do so, feed-forward the trained model on the target dataset and retrieve the extracted features by running:

_, feats = model.forward(inputs, lengths)

feats is a PyTorch tensor of shape (num_layers, batch_size, seq_len, rnn_hidden_size) where:

  • num_layers is the RNN depth of your APC model
  • batch_size is your inference batch size
  • seq_len is the maximum sequence length and is determined when you run prepare_data.py. By default this value is 1600.
  • rnn_hidden_size is the dimensionality of the RNN hidden unit.

As you can see, feats is essentially the RNN hidden states in an APC model. You can think of APC as a speech version of ELMo if you are familiar with it.

There are many ways to incorporate feats into your downstream task. One of the easiest way is to take only the outputs of the last RNN layer (i.e., feats[-1, :, :, :]) as the input features to your downstream model, which is what we did in our paper. Feel free to explore other mechanisms.

Pre-trained models

We release the pre-trained models that were used to produce the numbers reported in the paper. load_pretrained_model.py provides a simple example of loading a pre-trained model.

Reference

Please cite our paper(s) if you find this repository useful. This first paper proposes the APC objective, while the second paper applies it to speech recognition, speech translation, and speaker identification, and provides more systematic analysis on the learned representations. Cite both if you are kind enough!

@inproceedings{chung2019unsupervised,
  title = {An unsupervised autoregressive model for speech representation learning},
  author = {Chung, Yu-An and Hsu, Wei-Ning and Tang, Hao and Glass, James},
  booktitle = {Interspeech},
  year = {2019}
}
@inproceedings{chung2020generative,
  title = {Generative pre-training for speech with autoregressive predictive coding},
  author = {Chung, Yu-An and Glass, James},
  booktitle = {ICASSP},
  year = {2020}
}

Contact

Feel free to shoot me an email for any inquiries about the paper and this repository.

Owner
iamyuanchung
Natural language & speech processing researcher
iamyuanchung
Convert Mission Planner (ArduCopter) Waypoint Missions to Litchi CSV Format to execute on DJI Drones

Mission Planner to Litchi Convert Mission Planner (ArduCopter) Waypoint Surveys to Litchi CSV Format to execute on DJI Drones Litchi doesn't support S

Yaros 24 Dec 09, 2022
CSD: Consistency-based Semi-supervised learning for object Detection

CSD: Consistency-based Semi-supervised learning for object Detection (NeurIPS 2019) By Jisoo Jeong, Seungeui Lee, Jee-soo Kim, Nojun Kwak Installation

80 Dec 15, 2022
Bib-parser - Convenient script to parse .bib files with the ACM Digital Library like metadata

Bib Parser Convenient script to parse .bib files with the ACM Digital Library li

Mehtab Iqbal (Shahan) 1 Jan 26, 2022
The 2nd place solution of 2021 google landmark retrieval on kaggle.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

229 Dec 13, 2022
Cycle Consistent Adversarial Domain Adaptation (CyCADA)

Cycle Consistent Adversarial Domain Adaptation (CyCADA) A pytorch implementation of CyCADA. If you use this code in your research please consider citi

Hyunwoo Ko 2 Jan 10, 2022
PyTorch and GPyTorch implementation of the paper "Conditioning Sparse Variational Gaussian Processes for Online Decision-making."

Conditioning Sparse Variational Gaussian Processes for Online Decision-making This repository contains a PyTorch and GPyTorch implementation of the pa

Wesley Maddox 16 Dec 08, 2022
Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

causal-bald | Abstract | Installation | Example | Citation | Reproducing Results DUE An implementation of the methods presented in Causal-BALD: Deep B

OATML 13 Oct 07, 2022
Code for the paper "A Study of Face Obfuscation in ImageNet"

A Study of Face Obfuscation in ImageNet Code for the paper: A Study of Face Obfuscation in ImageNet Kaiyu Yang, Jacqueline Yau, Li Fei-Fei, Jia Deng,

35 Oct 04, 2022
Conceptual 12M is a dataset containing (image-URL, caption) pairs collected for vision-and-language pre-training.

Conceptual 12M We introduce the Conceptual 12M (CC12M), a dataset with ~12 million image-text pairs meant to be used for vision-and-language pre-train

Google Research Datasets 226 Dec 07, 2022
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Phil Wang 12.6k Jan 09, 2023
Doods2 - API for detecting objects in images and video streams using Tensorflow

DOODS2 - Return of DOODS Dedicated Open Object Detection Service - Yes, it's a b

Zach 101 Jan 04, 2023
The Turing Change Point Detection Benchmark: An Extensive Benchmark Evaluation of Change Point Detection Algorithms on real-world data

Turing Change Point Detection Benchmark Welcome to the repository for the Turing Change Point Detection Benchmark, a benchmark evaluation of change po

The Alan Turing Institute 85 Dec 28, 2022
Open Source Light Field Toolbox for Super-Resolution

BasicLFSR BasicLFSR is an open-source and easy-to-use Light Field (LF) image Super-Ressolution (SR) toolbox based on PyTorch, including a collection o

Squidward 50 Nov 18, 2022
MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021)

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

2 Jan 29, 2022
Visual odometry package based on hardware-accelerated NVIDIA Elbrus library with world class quality and performance.

Isaac ROS Visual Odometry This repository provides a ROS2 package that estimates stereo visual inertial odometry using the Isaac Elbrus GPU-accelerate

NVIDIA Isaac ROS 343 Jan 03, 2023
A PyTorch Library for Accelerating 3D Deep Learning Research

Kaolin: A Pytorch Library for Accelerating 3D Deep Learning Research Overview NVIDIA Kaolin library provides a PyTorch API for working with a variety

NVIDIA GameWorks 3.5k Jan 07, 2023
⚾🤖⚾ Automatic baseball pitching overlay in realtime

⚾ Automatically overlaying pitch motion and trajectory with machine learning! This project takes your baseball pitching clips and automatically genera

Tony Chou 240 Dec 05, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21

ANEMONE A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21 Dependencies python==3.6.1 dgl==

Graph Analysis & Deep Learning Laboratory, GRAND 30 Dec 14, 2022
Decorators for maximizing memory utilization with PyTorch & CUDA

torch-max-mem This package provides decorators for memory utilization maximization with PyTorch and CUDA by starting with a maximum parameter size and

Max Berrendorf 10 May 02, 2022