[NeurIPS 2021] ORL: Unsupervised Object-Level Representation Learning from Scene Images

Overview

Unsupervised Object-Level Representation Learning from Scene Images

This repository contains the official PyTorch implementation of the ORL algorithm for self-supervised representation learning.

Unsupervised Object-Level Representation Learning from Scene Images,
Jiahao Xie, Xiaohang Zhan, Ziwei Liu, Yew Soon Ong, Chen Change Loy
In NeurIPS 2021
[Paper][Project Page][Bibtex]

highlights

Updates

  • [12/2021] Code and pre-trained models of ORL are released.

Installation

Please refer to INSTALL.md for installation and dataset preparation.

Models

Pre-trained models can be downloaded from Google Drive. Please see our paper for transfer learning results on different benchmarks.

Usage

Stage 1: Image-level pre-training

You need to pre-train an image-level contrastive learning model in this stage. Take BYOL as an example:

bash tools/dist_train.sh configs/selfsup/orl/coco/stage1/r50_bs512_ep800.py 8

This stage can be freely replaced with other image-level contrastive learning models.

Stage 2: Correspondence discovery

  • KNN image retrieval

First, extract all features in the training set using the pre-trained model weights in Stage 1:

bash tools/dist_train.sh configs/selfsup/orl/coco/stage1/r50_bs512_ep800_extract_feature.py 8 --resume_from work_dirs/selfsup/orl/coco/stage1/r50_bs512_ep800/epoch_800.pth

Second, retrieve KNN for each image using tools/coco_knn_image_retrieval.ipynb. The corresponding KNN image ids will be saved as a json file train2017_knn_instance.json under data/coco/meta/.

  • RoI generation

Apply selective search to generate region proposals for all images in the training set:

bash tools/dist_selective_search_single_gpu.sh configs/selfsup/orl/coco/stage2/selective_search_train2017.py data/coco/meta/train2017_selective_search_proposal.json

The script and config only support single-image single-gpu inference since different images can have different number of generated region proposals by selective search, which cannot be gathered if distributed in multiple gpus. You can also directly download here under data/coco/meta/ if you want to skip this step.

  • RoI pair retrieval

Retrieve top-ranked RoI pairs:

bash tools/dist_generate_correspondence_single_gpu.sh configs/selfsup/orl/coco/stage2/r50_bs512_ep800_generate_all_correspondence.py work_dirs/selfsup/orl/coco/stage1/r50_bs512_ep800/epoch_800.pth data/coco/meta/train2017_knn_instance.json data/coco/meta/train2017_knn_instance_correspondence.json

The script and config also only support single-image single-gpu inference since different image pairs can have different number of generated inter-RoI pairs, which cannot be gathered if distributed in multiple gpus. A workaround to speed up the retrieval process is to split the whole dataset into several parts and process each part on each gpu in parallel. We provide an example of these configs (10 parts in total) in configs/selfsup/orl/coco/stage2/r50_bs512_ep800_generate_partial_correspondence/. After generating each part, you can use tools/merge_partial_correspondence_files.py to merge them together and save the final correspondence json file train2017_knn_instance_correspondence.json under data/coco/meta/.

Stage 3: Object-level pre-training

After obtaining the correspondence file in Stage 2, you can then perform object-level pre-training:

bash tools/dist_train.sh configs/selfsup/orl/coco/stage3/r50_bs512_ep800.py 8

Transferring to downstream tasks

Please refer to GETTING_STARTED.md for transferring to various downstream tasks.

Acknowledgement

We would like to thank the OpenSelfSup for its open-source project and PyContrast for its detection evaluation configs.

Citation

Please consider citing our paper in your publications if the project helps your research. BibTeX reference is as follows:

@inproceedings{xie2021unsupervised,
  title={Unsupervised Object-Level Representation Learning from Scene Images},
  author={Xie, Jiahao and Zhan, Xiaohang and Liu, Ziwei and Ong, Yew Soon and Loy, Chen Change},
  booktitle={NeurIPS},
  year={2021}
}
Owner
Jiahao Xie
Jiahao Xie
An implementation of the 1. Parallel, 2. Streaming, 3. Randomized SVD using MPI4Py

PYPARSVD This implementation allows for a singular value decomposition which is: Distributed using MPI4Py Streaming - data can be shown in batches to

Romit Maulik 44 Dec 31, 2022
[NeurIPS 2021] PyTorch Code for Accelerating Robotic Reinforcement Learning with Parameterized Action Primitives

Robot Action Primitives (RAPS) This repository is the official implementation of Accelerating Robotic Reinforcement Learning via Parameterized Action

Murtaza Dalal 55 Dec 27, 2022
BBB streaming without Xorg and Pulseaudio and Chromium and other nonsense (heavily WIP)

BBB Streamer NG? Makes a conference like this... ...streamable like this! I also recorded a small video showing the basic features: https://www.youtub

Lukas Schauer 60 Oct 21, 2022
Project ArXiv Citation Network

Project ArXiv Citation Network Overview This project involved the analysis of the ArXiv citation network. Usage The complete code of this project is i

Dennis Núñez-Fernández 5 Oct 20, 2022
(NeurIPS '21 Spotlight) IQ-Learn: Inverse Q-Learning for Imitation

Inverse Q-Learning (IQ-Learn) Official code base for IQ-Learn: Inverse soft-Q Learning for Imitation, NeurIPS '21 Spotlight IQ-Learn is an easy-to-use

Divyansh Garg 102 Dec 20, 2022
🔀 Visual Room Rearrangement

AI2-THOR Rearrangement Challenge Welcome to the 2021 AI2-THOR Rearrangement Challenge hosted at the CVPR'21 Embodied-AI Workshop. The goal of this cha

AI2 55 Dec 22, 2022
Feedback is important: response-aware feedback mechanism for background based conversation

RFM The code for the paper: "Feedback is important: response-aware feedback mechanism for background based conversation." Requirements python 3.7 pyto

Jiatao Chen 2 Sep 29, 2022
Code for the IJCAI 2021 paper "Structure Guided Lane Detection"

SGNet Project for the IJCAI 2021 paper "Structure Guided Lane Detection" Abstract Recently, lane detection has made great progress with the rapid deve

Jinming Su 27 Dec 08, 2022
Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021)

Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021) Paper Video Instance Segmentation using Inter-Frame Communicat

Sukjun Hwang 81 Dec 29, 2022
A curated list of awesome resources combining Transformers with Neural Architecture Search

A curated list of awesome resources combining Transformers with Neural Architecture Search

Yash Mehta 173 Jan 03, 2023
U-Net for GBM

My Final Year Project(FYP) In National University of Singapore(NUS) You need Pytorch(stable 1.9.1) Both cuda version and cpu version are OK File Str

PinkR1ver 1 Oct 27, 2021
A Python library for adversarial machine learning focusing on benchmarking adversarial robustness.

ARES This repository contains the code for ARES (Adversarial Robustness Evaluation for Safety), a Python library for adversarial machine learning rese

Tsinghua Machine Learning Group 377 Dec 20, 2022
This repository is an unoffical PyTorch implementation of Medical segmentation in 3D and 2D.

Pytorch Medical Segmentation Read Chinese Introduction:Here! Recent Updates 2021.1.8 The train and test codes are released. 2021.2.6 A bug in dice was

EasyCV-Ellis 618 Dec 27, 2022
Official pytorch code for SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal

SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal This is the official pytorch code for SSAT: A Symmetric Semantic-

ForeverPupil 57 Dec 13, 2022
AugLiChem - The augmentation library for chemical systems.

AugLiChem Welcome to AugLiChem! The augmentation library for chemical systems. This package supports augmentation for both crystaline and molecular sy

BaratiLab 17 Jan 08, 2023
Heat transfer problemas solved using python

heat-transfer Heat transfer problems solved using python isolation-convection.py compares the temperature distribution on the problem as shown in the

2 Nov 14, 2021
HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electronic Health Records

HiPAL Code for KDD'22 Applied Data Science Track submission -- HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electro

Hanyang Liu 4 Aug 08, 2022
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency

Image Crop Analysis This is a repo for the code used for reproducing our Image Crop Analysis paper as shared on our blog post. If you plan to use this

Twitter Research 239 Jan 02, 2023
[CVPR 2021] Counterfactual VQA: A Cause-Effect Look at Language Bias

Counterfactual VQA (CF-VQA) This repository is the Pytorch implementation of our paper "Counterfactual VQA: A Cause-Effect Look at Language Bias" in C

Yulei Niu 94 Dec 03, 2022
🤖 A Python library for learning and evaluating knowledge graph embeddings

PyKEEN PyKEEN (Python KnowlEdge EmbeddiNgs) is a Python package designed to train and evaluate knowledge graph embedding models (incorporating multi-m

PyKEEN 1.1k Jan 09, 2023