Hierarchical Attentive Recurrent Tracking

Overview

Hierarchical Attentive Recurrent Tracking

This is an official Tensorflow implementation of single object tracking in videos by using hierarchical attentive recurrent neural networks, as presented in the following paper:

A. R. Kosiorek, A. Bewley, I. Posner, "Hierarchical Attentive Recurrent Tracking", NIPS 2017.

Installation

Install Tensorflow v1.1 and the following dependencies (using pip install -r requirements.txt (preferred) or pip install [package]):

  • matplotlib==1.5.3
  • numpy==1.12.1
  • pandas==0.18.1
  • scipy==0.18.1

Demo

The notebook scripts/demo.ipynb contains a demo, which shows how to evaluate tracker on an arbitrary image sequence. By default, it runs on images located in imgs folder and uses a pretrained model. Before running the demo please download AlexNet weights first (described in the Training section).

Data

  1. Download KITTI dataset from here. We need left color images and tracking labels.
  2. Unpack data into a data folder; images should be in an image folder and labels should be in a label folder.
  3. Resize all the images to (heigh=187, width=621) e.g. by using the scripts/resize_imgs.sh script.

Training

  1. Download the AlexNet weights:

    • Execute scripts/download_alexnet.sh or
    • Download the weights from here and put the file in the checkpoints folder.
  2. Run

     python scripts/train_hart_kitti.py --img_dir=path/to/image/folder --label_dir=/path/to/label/folder
    

The training script will save model checkpoints in the checkpoints folder and report train and test scores every couple of epochs. You can run tensorboard in the checkpoints folder to visualise training progress. Training should converge in about 400k iterations, which should take about 3 days. It might take a couple of hours between logging messages, so don't worry.

Evaluation on KITTI dataset

The scripts/eval_kitti.ipynb notebook contains the code necessary to prepare (IoU, timesteps) curves for train and validation set of KITTI. Before running the evaluation:

  • Download AlexNet weights (described in the Training section).
  • Update image and label folder paths in the notebook.

Citation

If you find this repo useful in your research, please consider citing:

@inproceedings{Kosiorek2017hierarchical,
   title = {Hierarchical Attentive Recurrent Tracking},
   author = {Kosiorek, Adam R and Bewley, Alex and Posner, Ingmar},
   booktitle = {Neural Information Processing Systems},
   url = {http://www.robots.ox.ac.uk/~mobile/Papers/2017NIPS_AdamKosiorek.pdf},
   pdf = {http://www.robots.ox.ac.uk/~mobile/Papers/2017NIPS_AdamKosiorek.pdf},
   year = {2017},
   month = {December}
}

License

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.

Release Notes

Version 1.0

  • Original version from the paper. It contains the KITTI tracking experiment.
Owner
Adam Kosiorek
I'm a PhD student at the Oxford Robotics Institute. I work on Machine Learning for perception - I'm looking into external memory and attention for RNNs.
Adam Kosiorek
Graph parsing approach to structured sentiment analysis.

Fine-grained Sentiment Analysis as Dependency Graph Parsing This repository contains the code and datasets described in following paper: Fine-grained

Jeremy Barnes 36 Dec 12, 2022
Annotated, understandable, and visually interpretable PyTorch implementations of: VAE, BIRVAE, NSGAN, MMGAN, WGAN, WGANGP, LSGAN, DRAGAN, BEGAN, RaGAN, InfoGAN, fGAN, FisherGAN

Overview PyTorch 0.4.1 | Python 3.6.5 Annotated implementations with comparative introductions for minimax, non-saturating, wasserstein, wasserstein g

Shayne O'Brien 471 Dec 16, 2022
Using deep learning to predict gene structures of the coding genes in DNA sequences of Arabidopsis thaliana

DeepGeneAnnotator: A tool to annotate the gene in the genome The master thesis of the "Using deep learning to predict gene structures of the coding ge

Ching-Tien Wang 3 Sep 09, 2022
This repository builds a basic vision transformer from scratch so that one beginner can understand the theory of vision transformer.

vision-transformer-from-scratch This repository includes several kinds of vision transformers from scratch so that one beginner can understand the the

1 Dec 24, 2021
Repository for the "Gotta Go Fast When Generating Data with Score-Based Models" paper

Gotta Go Fast When Generating Data with Score-Based Models This repo contains the official implementation for the paper Gotta Go Fast When Generating

Alexia Jolicoeur-Martineau 89 Nov 09, 2022
Fuwa-http - The http client implementation for the fuwa eco-system

Fuwa HTTP The HTTP client implementation for the fuwa eco-system Example import

Fuwa 2 Feb 16, 2022
Visual odometry package based on hardware-accelerated NVIDIA Elbrus library with world class quality and performance.

Isaac ROS Visual Odometry This repository provides a ROS2 package that estimates stereo visual inertial odometry using the Isaac Elbrus GPU-accelerate

NVIDIA Isaac ROS 343 Jan 03, 2023
Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.

Face Detect MQTT Face or Pose detector that emits MQTT events when a face or human body is detected and not detected. I built this as an alternative t

Jacob Morris 38 Oct 21, 2022
Lazy, a tool for running things in idle time

Lazy, a tool for running things in idle time Mostly used to stop CUDA ML model training from making my desktop unusable. Simply monitors keyboard/mous

N Shepperd 46 Nov 06, 2022
Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Video Object Segmentation.

Training Script for Reuse-VOS This code implementation of CVPR 2021 paper : Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Vi

HYOJINPARK 22 Jan 01, 2023
《Unsupervised 3D Human Pose Representation with Viewpoint and Pose Disentanglement》(ECCV 2020) GitHub: [fig9]

Unsupervised 3D Human Pose Representation [Paper] The implementation of our paper Unsupervised 3D Human Pose Representation with Viewpoint and Pose Di

42 Nov 24, 2022
Stitch it in Time: GAN-Based Facial Editing of Real Videos

STIT - Stitch it in Time [Project Page] Stitch it in Time: GAN-Based Facial Edit

1.1k Jan 04, 2023
3D Generative Adversarial Network

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling This repository contains pre-trained models and sampling

Chengkai Zhang 791 Dec 20, 2022
Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting

Autoformer (NeurIPS 2021) Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting Time series forecasting is a c

THUML @ Tsinghua University 847 Jan 08, 2023
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Dirk Neuhäuser 6 Dec 08, 2022
This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR

This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR,which is an open-source toolbox based on PyTorch. The overall architecture will be sh

Jianquan Ye 82 Nov 17, 2022
Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

101 Jan 01, 2023
Probabilistic Tensor Decomposition of Neural Population Spiking Activity

Probabilistic Tensor Decomposition of Neural Population Spiking Activity Matlab (recommended) and Python (in developement) implementations of Soulat e

Hugo Soulat 6 Nov 30, 2022
Segment axon and myelin from microscopy data using deep learning

Segment axon and myelin from microscopy data using deep learning. Written in Python. Using the TensorFlow framework. Based on a convolutional neural network architecture. Pixels are classified as eit

NeuroPoly 103 Nov 29, 2022