An adaptive hierarchical energy management strategy for hybrid electric vehicles

Overview

An adaptive hierarchical energy management strategy

This project contains the source code of an adaptive hierarchical EMS combining heuristic equivalent consumption minimization strategy (ECMS) knowledge and deep deterministic policy gradient (DDPG). It can be used to reproduce the results described in the paper "An adaptive hierarchical energy management strategy for hybrid electric vehicles combining heuristic engineering domain knowledge and data-driven deep reinforcement learning, submitted to IEEE Transactions on Transportation Electrification".

schematic diagram
Figure.1 An adaptive hierarchical energy management strategy combining heuristic ECMS and data-driven DDPG

Installation Dependencies:

  • Python3.6
  • Tensorflow1.12
  • Matlab2019B

How to run:

  1. Add the folder which extracted from Proposed strategy.rar to the environment path of MATLAB.
  2. Put 'main.py' in 'main/system' then run it.
  3. Observe the printed results of each episode.

Main files:

  • main.py: The main program containing the source of the proposed algorithm.
  • Proposed strategy\main\System\HevP2ReferenceApplication: The simulink simulator of the hybrid electric vehicle.
  • Proposed strategy\main\System\Interaction.m: The interactive Matlab Engine API for the main Python program.
  • Proposed strategy\main\System\Initialize_simulink.m: Use this sentence to initialize Matlab Engine API for the main Python program and restart the simulation model after the end of the previous episode. (Some MATLAB functions return no output arguments. If the function returns no arguments, set nargout to 0)
flow chart
Figure.2 Flow chart

Calling Matlab/Simulink from Python

To start the Matlab engine within a Python session, you first must install the engine API as a Python package. MATLAB provides a standard Python setup.py file for building and installing the engine using the distutils module. You can use the same setup.py commands to build and install the engine on Windows, Mac, or Linux systems.
Each Matlab release has a Python setup.py package. When you use the package, it runs the specified Matlab version. To switch between Matlab versions, you need to switch between the Python packages. For more information, see https://www.mathworks.com/help/matlab/matlab_external/install-the-matlab-engine-for-python.html
Use follows sentence to import matlab.engine module and start the Matlab engine:

import matlab.engine
engine = matlab.engine.start_matlab()  

Use this sentence to initialize Matlab Engine API for the main Python program and restart the simulation model after the end of the previous episode. (Some MATLAB functions return no output arguments. If the function returns no arguments, set nargout to 0)

engine.Initialize_simulink(nargout=0)

Use this sentence to interact between Python and Matlab/Simulink. (You can call any Matlab function directly and return the results to Python. When you call a function with the engine, by default the engine returns a single output argument. If you know that the function can return multiple arguments, use the nargout argument to specify the number of output arguments.)

SOC, ReqPow, Clock, EquFuelCon= engine.Interaction(action, nargout=4)

This sentence realize the interaction between Python and Matlab/simulink. Use this sentence to transfer action from DDPG agent to simulation model of Simulink. Then transfer simulation data from simulation model back to DDPG agent of Python.

  • SOC: Battery SOC.
  • ReqPow: Required power.
  • Clock: Simulation time.
  • EquFuelCon: Equivalant fuel consumption.
  • action: action of DDPG agent.

Note that in the proposed algorithm, the SOC, the required power and the last control action is chosen as state variables, the EF is the control action and the immediate reward is defined by the function of the deviation of the current SOC from the target SOC.

Hyperparameter:

Parameter Value
Number of hidden layers 3
Neurons in each hidden layers 120
Activation function relu
Learning rate for actor 0.0001
Learning rate for critic 0.0002
Reward discount factor 0.9
Soft replacement factor 0.001
Replay memory size 10000
Mini-batch size 64

Attention:

The environment runs in FTP75 condition by default. If you want to change it, you need to open 'main\System\HevP2ReferenceApplication' and install drive cycle source toolbox, then change the running time in Simulink and main.py file.

Performence

We train the reinforcement learning agent to minimize the fuel consumption using the proposed strategy. Figure.3 shows the SOC sustenance behavior between the proposed startegy and the other three benchmark algorithms.

flow chart
Figure.3 SOC trajectories between the optimized proposed strategy and benchmark strategies

Figure.4 shows the different engine working areas in different control strategies. Although the SOC trajectories differ considerably between the proposed and the DP-based strategy, the engine working areas under the two strategies locate in similar higher fuel efficiency regions more frequently, compared to the other benchmark strategies.

flow chart
Figure.4 Engine working areas for different control strategies
This repository contains code for the paper "Decoupling Representation and Classifier for Long-Tailed Recognition", published at ICLR 2020

Classifier-Balancing This repository contains code for the paper: Decoupling Representation and Classifier for Long-Tailed Recognition Bingyi Kang, Sa

Facebook Research 820 Dec 26, 2022
GLANet - The code for Global and Local Alignment Networks for Unpaired Image-to-Image Translation arxiv

GLANet The code for Global and Local Alignment Networks for Unpaired Image-to-Image Translation arxiv Framework: visualization results: Getting Starte

stanley 29 Dec 14, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
ISNAS-DIP: Image Specific Neural Architecture Search for Deep Image Prior [CVPR 2022]

ISNAS-DIP: Image-Specific Neural Architecture Search for Deep Image Prior (CVPR 2022) Metin Ersin Arican*, Ozgur Kara*, Gustav Bredell, Ender Konukogl

Özgür Kara 24 Dec 18, 2022
Network Compression via Central Filter

Network Compression via Central Filter Environments The code has been tested in the following environments: Python 3.8 PyTorch 1.8.1 cuda 10.2 torchsu

2 May 12, 2022
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

The source code is temporariy removed, as we are solving potential copyright and license issues with GRANSO (http://www.timmitchell.com/software/GRANS

SUN Group @ UMN 28 Aug 03, 2022
For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training.

LongScientificFormer For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training. Some code

Athar Sefid 6 Nov 02, 2022
GraphLily: A Graph Linear Algebra Overlay on HBM-Equipped FPGAs

GraphLily: A Graph Linear Algebra Overlay on HBM-Equipped FPGAs GraphLily is the first FPGA overlay for graph processing. GraphLily supports a rich se

Cornell Zhang Research Group 39 Dec 13, 2022
GDSC-ML Team Interview Task

GDSC-ML-Team---Interview-Task Task 1 : Clean or Messy room In this task we have to classify the given test images as clean or messy. - Link for datase

Aayush. 1 Jan 19, 2022
Blind visual quality assessment on 360° Video based on progressive learning

Blind visual quality assessment on omnidirectional or 360 video (ProVQA) Blind VQA for 360° Video via Progressively Learning from Pixels, Frames and V

5 Jan 06, 2023
EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration

EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration Ruikang Xu, Zeyu Xiao, Jie Huang, Yueyi Zhang, Zhiwei Xiong. EDPN: Enhanced Deep Pyra

69 Dec 15, 2022
A programming language written with python

Kaoft A programming language written with python How to use A simple Hello World: c="Hello World" c Output: "Hello World" Operators: a=12

1 Jan 24, 2022
Indonesian Car License Plate Character Recognition using Tensorflow, Keras and OpenCV.

Monopol Indonesian Car License Plate (Indonesia Mobil Nomor Polisi) Character Recognition using Tensorflow, Keras and OpenCV. Background This applicat

Jayaku Briliantio 3 Apr 07, 2022
Official implementation of SynthTIGER (Synthetic Text Image GEneratoR) ICDAR 2021

🐯 SynthTIGER: Synthetic Text Image GEneratoR Official implementation of SynthTIGER | Paper | Datasets Moonbin Yim1, Yoonsik Kim1, Han-cheol Cho1, Sun

Clova AI Research 256 Jan 05, 2023
Image Recognition using Pytorch

PyTorch Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot practice and contributing in

Sarat Chinni 1 Nov 02, 2021
PyTorch implementation of "Optimization Planning for 3D ConvNets"

Optimization-Planning-for-3D-ConvNets Code for the ICML 2021 paper: Optimization Planning for 3D ConvNets. Authors: Zhaofan Qiu, Ting Yao, Chong-Wah N

Zhaofan Qiu 2 Jan 12, 2022
The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

ycj_project 1 Jan 18, 2022
Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis"

Beyond the Spectrum Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis" by Yang He, Ning Yu, Margret Keu

Yang He 27 Jan 07, 2023
Implementation for the paper 'YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs'

YOLO-ReT This is the original implementation of the paper: YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs. Prakhar Ganesh, Ya

69 Oct 19, 2022
A PyTorch Implementation of Single Shot Scale-invariant Face Detector.

S³FD: Single Shot Scale-invariant Face Detector A PyTorch Implementation of Single Shot Scale-invariant Face Detector. Eval python wider_eval_pytorch.

carwin 235 Jan 07, 2023