Temporal Segment Networks (TSN) in PyTorch

Overview

TSN-Pytorch

We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation for TSN as well as other STOA frameworks for various tasks. The lessons we learned in this repo are incorporated into MMAction to make it bettter. We highly recommend you switch to it. This repo will remain here for historical references.

Note: always use git clone --recursive https://github.com/yjxiong/tsn-pytorch to clone this project. Otherwise you will not be able to use the inception series CNN archs.

This is a reimplementation of temporal segment networks (TSN) in PyTorch. All settings are kept identical to the original caffe implementation.

For optical flow extraction and video list generation, you still need to use the original TSN codebase.

Training

To train a new model, use the main.py script.

The command to reproduce the original TSN experiments of RGB modality on UCF101 can be

python main.py ucf101 RGB <ucf101_rgb_train_list> <ucf101_rgb_val_list> \
   --arch BNInception --num_segments 3 \
   --gd 20 --lr 0.001 --lr_steps 30 60 --epochs 80 \
   -b 128 -j 8 --dropout 0.8 \
   --snapshot_pref ucf101_bninception_ 

For flow models:

python main.py ucf101 Flow <ucf101_flow_train_list> <ucf101_flow_val_list> \
   --arch BNInception --num_segments 3 \
   --gd 20 --lr 0.001 --lr_steps 190 300 --epochs 340 \
   -b 128 -j 8 --dropout 0.7 \
   --snapshot_pref ucf101_bninception_ --flow_pref flow_  

For RGB-diff models:

python main.py ucf101 RGBDiff <ucf101_rgb_train_list> <ucf101_rgb_val_list> \
   --arch BNInception --num_segments 7 \
   --gd 40 --lr 0.001 --lr_steps 80 160 --epochs 180 \
   -b 128 -j 8 --dropout 0.8 \
   --snapshot_pref ucf101_bninception_ 

Testing

After training, there will checkpoints saved by pytorch, for example ucf101_bninception_rgb_checkpoint.pth.

Use the following command to test its performance in the standard TSN testing protocol:

python test_models.py ucf101 RGB <ucf101_rgb_val_list> ucf101_bninception_rgb_checkpoint.pth \
   --arch BNInception --save_scores <score_file_name>

Or for flow models:

python test_models.py ucf101 Flow <ucf101_rgb_val_list> ucf101_bninception_flow_checkpoint.pth \
   --arch BNInception --save_scores <score_file_name> --flow_pref flow_
Owner
Young and simple. [email protected] -> Amazon Rekognition. We are hiring summer interns for 20
R-Drop: Regularized Dropout for Neural Networks

R-Drop: Regularized Dropout for Neural Networks R-drop is a simple yet very effective regularization method built upon dropout, by minimizing the bidi

756 Dec 27, 2022
Code to train models from "Paraphrastic Representations at Scale".

Paraphrastic Representations at Scale Code to train models from "Paraphrastic Representations at Scale". The code is written in Python 3.7 and require

John Wieting 71 Dec 19, 2022
People log into different sites every day to get information and browse through these sites one by one

HyperLink People log into different sites every day to get information and browse through these sites one by one. And they are exposed to advertisemen

0 Feb 17, 2022
Use deep learning, genetic programming and other methods to predict stock and market movements

StockPredictions Use classic tricks, neural networks, deep learning, genetic programming and other methods to predict stock and market movements. Both

Linda MacPhee-Cobb 386 Jan 03, 2023
MonoRCNN is a monocular 3D object detection method for automonous driving

MonoRCNN MonoRCNN is a monocular 3D object detection method for automonous driving, published at ICCV 2021. This project is an implementation of MonoR

87 Dec 27, 2022
Datasets, Transforms and Models specific to Computer Vision

vision Datasets, Transforms and Models specific to Computer Vision Installation First install the nightly version of OneFlow python3 -m pip install on

OneFlow 68 Dec 07, 2022
Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis

Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis This is a PyTorch implementation of the model described in our pape

qzhb 6 Jul 08, 2021
Implementation of the GVP-Transformer, which was used in the paper "Learning inverse folding from millions of predicted structures" for de novo protein design alongside Alphafold2

GVP Transformer (wip) Implementation of the GVP-Transformer, which was used in the paper Learning inverse folding from millions of predicted structure

Phil Wang 19 May 06, 2022
A collection of loss functions for medical image segmentation

A collection of loss functions for medical image segmentation

Jun 3.1k Jan 03, 2023
Rest API Written In Python To Classify NSFW Images.

Rest API Written In Python To Classify NSFW Images.

Wahyusaputra 2 Dec 23, 2021
Official implementation of the network presented in the paper "M4Depth: A motion-based approach for monocular depth estimation on video sequences"

M4Depth This is the reference TensorFlow implementation for training and testing depth estimation models using the method described in M4Depth: A moti

Michaël Fonder 76 Jan 03, 2023
The coda and data for "Measuring Fine-Grained Domain Relevance of Terms: A Hierarchical Core-Fringe Approach" (ACL '21)

We propose a hierarchical core-fringe learning framework to measure fine-grained domain relevance of terms – the degree that a term is relevant to a broad (e.g., computer science) or narrow (e.g., de

Jie Huang 14 Oct 21, 2022
QAT(quantize aware training) for classification with MQBench

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
Efficient and Scalable Physics-Informed Deep Learning and Scientific Machine Learning on top of Tensorflow for multi-worker distributed computing

Notice: Support for Python 3.6 will be dropped in v.0.2.1, please plan accordingly! Efficient and Scalable Physics-Informed Deep Learning Collocation-

tensordiffeq 74 Dec 09, 2022
Official repository for ABC-GAN

ABC-GAN The work represented in this repository is the result of a 14 week semesterthesis on photo-realistic image generation using generative adversa

IgorSusmelj 10 Jun 23, 2022
Implementation of "Deep Implicit Templates for 3D Shape Representation"

Deep Implicit Templates for 3D Shape Representation Zerong Zheng, Tao Yu, Qionghai Dai, Yebin Liu. arXiv 2020. This repository is an implementation fo

Zerong Zheng 144 Dec 07, 2022
Simulating an AI playing 2048 using the Expectimax algorithm

2048-expectimax Simulating an AI playing 2048 using the Expectimax algorithm The base game engine uses code from here. The AI player is modeled as a m

Subha Ramesh 2 Jan 31, 2022
Official implementation of the NeurIPS'21 paper 'Conditional Generation Using Polynomial Expansions'.

Conditional Generation Using Polynomial Expansions Official implementation of the conditional image generation experiments as described on the NeurIPS

Grigoris 4 Aug 07, 2022
TorchX: A PyTorch Extension Library for More Efficient Deep Learning

TorchX TorchX: A PyTorch Extension Library for More Efficient Deep Learning. @misc{torchx, author = {Ansheng You and Changxu Wang}, title = {T

Donny You 8 May 28, 2022
Source code for "OmniPhotos: Casual 360° VR Photography"

OmniPhotos: Casual 360° VR Photography Project Page | Video | Paper | Demo | Data This repository contains the source code for creating and viewing Om

Christian Richardt 144 Dec 30, 2022