Learning to Segment Instances in Videos with Spatial Propagation Network

Overview

Learning to Segment Instances in Videos with Spatial Propagation Network

alt text

This paper is available at the 2017 DAVIS Challenge website.

Check our results in this video.

Contact: Jingchun Cheng (chengjingchun at gmail dot com)

Cite the Paper

If you find that our method is useful in your research, please cite:

@article{DAVIS2017-6th,
  author = {J. Cheng and S. Liu and Y.-H. Tsai and W.-C. Hung and S. Gupta and J. Gu and J. Kautz and S. Wang and M.-H. Yang}, 
  title = {Learning to Segment Instances in Videos with Spatial Propagation Network}, 
  journal = {The 2017 DAVIS Challenge on Video Object Segmentation - CVPR Workshops}, 
  year = {2017}
}

About the Code

  • The code released here mainly consistes of two parts in the paper: foreground segmentation and instance recognition.

  • It contains the parent net for foreground segmentation and training codes for instance recognition networks.

  • The matlab_code folder contains a simple version of our CRAF step for segmentation refinement.

Requirements

Training

  • Train the per-object recognition model.
    cd training
    python solve.py PATH_OF_MODEL PATH_OF_SOLVER
    Foe example, on the 'choreography' video for the 1st object, run:
    python solve.py ../pretrained/PN_ResNetF.caffemodel ../ResNetF/testnet_per_obj/choreography/solver_1.prototxt

Testing

  • Test the general foreground/backgroung model.
    python infer_test_fgbg.py PATH_OF_MODEL PATH_OF_RESULT VIDEO_NAME
    Foe example, on the 'lions' video, run:
    python infer_test_fgbg.py pretrained/PN_ResNetF.caffemodel results/fgbg lions

  • Test the object instance model.
    python infer_test_perobj.py MODEL_ITERATION VIDEO_NAME OBJECT_ID
    For example, on the 'lions' video for the 2nd object, run:
    python infer_test_perobj.py 3000 lions 2

  • Run example_CRAF.m in the matlab_code folder for a demo on CRAF segmentation refinement.

Download Our Segmentation Results on 2017 DAVIS Challenge

  • General foreground/background segmentation here
  • Instance-level object segmentation without refinement here
  • Final instance-level object segmentation with refinement here

Note

The model and code are available for non-commercial research purposes only.

  • 09/2017: code and model released
  • 03/2018: pre-trained model updated
Owner
Jingchun Cheng
Jingchun Cheng
Pre-trained BERT Models for Ancient and Medieval Greek, and associated code for LaTeCH 2021 paper titled - "A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek"

Ancient Greek BERT The first and only available Ancient Greek sub-word BERT model! State-of-the-art post fine-tuning on Part-of-Speech Tagging and Mor

Pranaydeep Singh 22 Dec 08, 2022
M3DSSD: Monocular 3D Single Stage Object Detector

M3DSSD: Monocular 3D Single Stage Object Detector Setup pytorch 0.4.1 Preparation Download the full KITTI detection dataset. Then place a softlink (or

mumianyuxin 64 Dec 27, 2022
Configure SRX interfaces with Scrapli

Configure SRX interfaces with Scrapli Overview This example will show how to configure interfaces on Juniper's SRX firewalls. In addition to the Pytho

Calvin Remsburg 1 Jan 07, 2022
This is a model made out of Neural Network specifically a Convolutional Neural Network model

This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternativ

9 Oct 18, 2022
CLIPImageClassifier wraps clip image model from transformers

CLIPImageClassifier CLIPImageClassifier wraps clip image model from transformers. CLIPImageClassifier is initialized with the argument classes, these

Jina AI 6 Sep 12, 2022
An open source app to help calm you down when needed.

By: Seanpm2001, Et; Al. Top README.md Read this article in a different language Sorted by: A-Z Sorting options unavailable ( af Afrikaans Afrikaans |

Sean P. Myrick V19.1.7.2 2 Oct 24, 2022
Animatable Neural Radiance Fields for Modeling Dynamic Human Bodies

To make the comparison with Animatable NeRF easier on the Human3.6M dataset, we save the quantitative results at here, which also contains the results of other methods, including Neural Body, D-NeRF,

ZJU3DV 359 Jan 08, 2023
Tracking Pipeline helps you to solve the tracking problem more easily

Tracking_Pipeline Tracking_Pipeline helps you to solve the tracking problem more easily I integrate detection algorithms like: Yolov5, Yolov4, YoloX,

VNOpenAI 32 Dec 21, 2022
JumpDiff: Non-parametric estimator for Jump-diffusion processes for Python

jumpdiff jumpdiff is a python library with non-parametric Nadaraya─Watson estimators to extract the parameters of jump-diffusion processes. With jumpd

Rydin 28 Dec 10, 2022
Extremely simple and fast extreme multi-class and multi-label classifiers.

napkinXC napkinXC is an extremely simple and fast library for extreme multi-class and multi-label classification, that focus of implementing various m

Marek Wydmuch 43 Nov 14, 2022
3D Human Pose Machines with Self-supervised Learning

3D Human Pose Machines with Self-supervised Learning Keze Wang, Liang Lin, Chenhan Jiang, Chen Qian, and Pengxu Wei, “3D Human Pose Machines with Self

Chenhan Jiang 398 Dec 20, 2022
Pointer-generator - Code for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Networks

Note: this code is no longer actively maintained. However, feel free to use the Issues section to discuss the code with other users. Some users have u

Abi See 2.1k Jan 04, 2023
A modular PyTorch library for optical flow estimation using neural networks

A modular PyTorch library for optical flow estimation using neural networks

neu-vig 113 Dec 20, 2022
An implementation of based on pytorch and mmcv

FisherPruning-Pytorch An implementation of Group Fisher Pruning for Practical Network Compression based on pytorch and mmcv Main Functions Pruning f

Peng Lu 15 Dec 17, 2022
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022
This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

ICCV Workshop 2021 VTGAN This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

Sharif Amit Kamran 25 Dec 08, 2022
AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning

AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning AutoPentest-DRL is an automated penetration testing framework based o

Cyber Range Organization and Design Chair 217 Jan 01, 2023
Detecting drunk people through thermal images using Deep Learning (CNN)

Drunk Detection CNN Detecting drunk people through thermal images using Deep Learning (CNN) Dataset We used thermal images provided by Electronics Lab

Giacomo Ferretti 3 Oct 27, 2022
Detecting and Tracking Small and Dense Moving Objects in Satellite Videos: A Benchmark

This dataset is a large-scale dataset for moving object detection and tracking in satellite videos, which consists of 40 satellite videos captured by Jilin-1 satellite platforms.

Qingyong 87 Dec 22, 2022