An implementation of based on pytorch and mmcv

Overview

FisherPruning-Pytorch

An implementation of <Group Fisher Pruning for Practical Network Compression> based on pytorch and mmcv


Main Functions

  • Pruning for fully-convolutional structures, such as one-stage detectors; (copied from the official code)

  • Pruning for networks combining convolutional layers and fully-connected layers, such as faster-RCNN and ResNet;

  • Pruning for networks which involve group convolutions, such as ResNeXt and RegNet.

Usage

Requirements

torch
torchvision
mmcv / mmcv-full
mmcls 
mmdet 

Compatibility

This code is tested with

pytorch=1.3
torchvision=0.4
cudatoolkit=10.0
mmcv-full==1.3.14
mmcls=0.16 
mmdet=2.17

and

pytorch=1.8
torchvision=0.9
cudatoolkit=11.1
mmcv==1.3.16
mmcls=0.16 
mmdet=2.17

Data

Download ImageNet and COCO, then extract them and organize the folders as

- detection
  |- tools
  |- configs
  |- data
  |   |- coco
  |   |   |- train2017
  |   |   |- val2017
  |   |   |- test2017
  |   |   |- annotations
  |
- classification
  |- tools
  |- configs
  |- data
  |   |- imagenet
  |   |   |- train
  |   |   |- val
  |   |   |- test 
  |   |   |- meta
  |
- ...

Commands

e.g. Classification

cd classification
  1. Pruning

    # single GPU
    python tools/train.py configs/xxx_pruning.py --gpus=1
    # multi GPUs (e.g. 4 GPUs)
    python -m torch.distributed.launch --nproc_per_node=4 tools/train.py configs/xxx_pruning.py --launch pytorch
  2. Fine-tune

    In the config file, modify the deploy_from to the pruned model, and modify the samples_per_gpu to 256/#GPUs. Then

    # single GPU
    python tools/train.py configs/xxx_finetune.py --gpus=1
    # multi GPUs (e.g. 4 GPUs)
    python -m torch.distributed.launch --nproc_per_node=4 tools/train.py configs/xxx_finetune.py --launch pytorch
  3. Test

    In the config file, add the attribute load_from to the finetuned model. Then

    python tools/test.py configs/xxx_finetune.py --metrics=accuracy

The commands for pruning and finetuning of detection models are similar to that of classification models. Instructions will be added soon.

Acknowledgments

My project acknowledges the official code FisherPruning.

Owner
Peng Lu
Peng Lu
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models

Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models, under review at ICLR 2017 requirements: T

Shuangfei Zhai 18 Mar 05, 2022
Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics

Dataset Cartography Code for the paper Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics at EMNLP 2020. This repository cont

AI2 125 Dec 22, 2022
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.

ENet This work has been published in arXiv: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. Packages: train contains too

e-Lab 344 Nov 21, 2022
This code provides a PyTorch implementation for OTTER (Optimal Transport distillation for Efficient zero-shot Recognition), as described in the paper.

Data Efficient Language-Supervised Zero-Shot Recognition with Optimal Transport Distillation This repository contains PyTorch evaluation code, trainin

Meta Research 45 Dec 20, 2022
Jax/Flax implementation of Variational-DiffWave.

jax-variational-diffwave Jax/Flax implementation of Variational-DiffWave. (Zhifeng Kong et al., 2020, Diederik P. Kingma et al., 2021.) DiffWave with

YoungJoong Kim 37 Dec 16, 2022
ToFFi - Toolbox for Frequency-based Fingerprinting of Brain Signals

ToFFi Toolbox This repository contains "before peer review" version of the software related to the preprint of the publication ToFFi - Toolbox for Fre

4 Aug 31, 2022
PyTorch implementation of PP-LCNet: A Lightweight CPU Convolutional Neural Network

PyTorch implementation of PP-LCNet Reproduction of PP-LCNet architecture as described in PP-LCNet: A Lightweight CPU Convolutional Neural Network by C

Quan Nguyen (Fly) 47 Nov 02, 2022
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking

Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking We revisit and address issues with Oxford 5k and Paris 6k image retrieval benchm

Filip Radenovic 188 Dec 17, 2022
Source code for TACL paper "KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation".

KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation Source code for TACL 2021 paper KEPLER: A Unified Model for Kn

THU-KEG 138 Dec 22, 2022
salabim - discrete event simulation in Python

Object oriented discrete event simulation and animation in Python. Includes process control features, resources, queues, monitors. statistical distrib

181 Dec 21, 2022
Current state of supervised and unsupervised depth completion methods

Awesome Depth Completion Table of Contents About Sparse-to-Dense Depth Completion Current State of Depth Completion Unsupervised VOID Benchmark Superv

224 Dec 28, 2022
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
Official repository for the ICCV 2021 paper: UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model.

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
Clustering with variational Bayes and population Monte Carlo

pypmc pypmc is a python package focusing on adaptive importance sampling. It can be used for integration and sampling from a user-defined target densi

45 Feb 06, 2022
A scientific and useful toolbox, which contains practical and effective long-tail related tricks with extensive experimental results

Bag of tricks for long-tailed visual recognition with deep convolutional neural networks This repository is the official PyTorch implementation of AAA

Yong-Shun Zhang 181 Dec 28, 2022
Neural network chess engine trained on Gary Kasparov's games.

Neural Chess It's not the best chess engine, but it is a chess engine. Proof of concept neural network chess engine (feed-forward multi-layer perceptr

3 Jun 22, 2022
Code for "Learning to Segment Rigid Motions from Two Frames".

rigidmask Code for "Learning to Segment Rigid Motions from Two Frames". ** This is a partial release with inference and evaluation code.

Gengshan Yang 157 Nov 21, 2022
Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Features"

EDM-subgenre-classifier This repository contains the code for "Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Fea

11 Dec 20, 2022
HyperaPy: An automatic hyperparameter optimization framework ⚡🚀

hyperpy HyperPy: An automatic hyperparameter optimization framework Description HyperPy: Library for automatic hyperparameter optimization. Build on t

Sergio Mora 7 Sep 06, 2022