Code for Dual Contrastive Learning for Unsupervised Image-to-Image Translation, NTIRE, CVPRW 2021.

Overview

arXiv

Dual Contrastive Learning Adversarial Generative Networks (DCLGAN)

We provide our PyTorch implementation of DCLGAN, which is a simple yet powerful model for unsupervised Image-to-image translation. Compared to CycleGAN, DCLGAN performs geometry changes with more realistic results. Compared to CUT, DCLGAN is usually more robust and achieves better performance. A viriant, SimDCL (Similarity DCLGAN) also avoids mode collapse using a new similarity loss.

DCLGAN is a general model performing all kinds of Image-to-Image translation tasks. It achieves SOTA performances in most tasks that we have tested.

Dual Contrastive Learning for Unsupervised Image-to-Image Translation
Junlin Han, Mehrdad Shoeiby, Lars Petersson, Mohammad Ali Armin
DATA61-CSIRO and Australian National University
In NTIRE, CVPRW 2021.

Our pipeline is quite straightforward. The main idea is a dual setting with two encoders to capture the variability in two distinctive domains.

Example Results

Unpaired Image-to-Image Translation

Qualitative results:

Quantitative results:

More visual results:

Prerequisites

Python 3.6 or above.

For packages, see requirements.txt.

Getting started

  • Clone this repo:
git clone https://github.com/JunlinHan/DCLGAN.git
  • Install PyTorch 1.4 or above and other dependencies (e.g., torchvision, visdom, dominate, gputil).

    For pip users, please type the command pip install -r requirements.txt.

    For Conda users, you can create a new Conda environment using conda env create -f environment.yml.

DCLGAN and SimDCL Training and Test

  • Download the grumpifycat dataset
bash ./datasets/download_cut_dataset.sh grumpifycat

The dataset is downloaded and unzipped at ./datasets/grumpifycat/.

  • To view training results and loss plots, run python -m visdom.server and click the URL http://localhost:8097.

Train the DCL model:

python train.py --dataroot ./datasets/grumpifycat --name grumpycat_DCL 

Or train the SimDCL model:

python train.py --dataroot ./datasets/grumpifycat --name grumpycat_SimDCL --model simdcl

We also support CUT:

python train.py --dataroot ./datasets/grumpifycat --name grumpycat_cut --model cut

and fastCUT:

python train.py --dataroot ./datasets/grumpifycat --name grumpycat_fastcut --model fastcut

and CycleGAN:

python train.py --dataroot ./datasets/grumpifycat --name grumpycat_cyclegan --model cycle_gan

The checkpoints will be stored at ./checkpoints/grumpycat_DCL/.

  • Test the DCL model:
python test.py --dataroot ./datasets/grumpifycat --name grumpycat_DCL

The test results will be saved to an html file here: ./results/grumpycat_DCL/latest_test/.

DCLGAN, SimDCL, CUT and CycleGAN

DCLGAN is a more robust unsupervised image-to-image translation model compared to previous models. Our performance is usually better than CUT & CycleGAN.

SIMDCL is a different version, it was designed to solve mode collpase. We recommend using it for small-scale, unbalanced dataset.

Datasets

Download CUT/CycleGAN/pix2pix datasets and learn how to create your own datasets.

Or download it here: https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/.

Apply a pre-trained DCL model and evaluate

We provide our pre-trained DCLGAN models for:

Cat <-> Dog : https://drive.google.com/file/d/1-0SICLeoySDG0q2k1yeJEI2QJvEL-DRG/view?usp=sharing

Horse <-> Zebra: https://drive.google.com/file/d/16oPsXaP3RgGargJS0JO1K-vWBz42n5lf/view?usp=sharing

CityScapes: https://drive.google.com/file/d/1ZiLAhYG647ipaVXyZdBCsGeiHgBmME6X/view?usp=sharing

Download the pre-tained model, unzip it and put it inside ./checkpoints (You may need to create checkpoints folder by yourself if you didn't run the training code).

Example usage: Download the dataset of Horse2Zebra and test the model using:

python test.py --dataroot ./datasets/horse2zebra --name horse2zebra_dcl

For FID score, use pytorch-fid.

Test the FID for Horse-> Zebra:

python -m pytorch_fid ./results/horse2zebra_dcl/test_latest/images/fake_B ./results/horse2zebra_dcl/test_latest/images/real_B

and Zorse-> Hebra:

python -m pytorch_fid ./results/horse2zebra_dcl/test_latest/images/fake_A ./results/horse2zebra_dcl/test_latest/images/real_A

Citation

If you use our code or our results, please consider citing our paper. Thanks in advance!

@inproceedings{han2021dcl,
  title={Dual Contrastive Learning for Unsupervised Image-to-Image Translation},
  author={Junlin Han and Mehrdad Shoeiby and Lars Petersson and Mohammad Ali Armin},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops},
  year={2021}
}

If you use something included in CUT, you may also CUT.

@inproceedings{park2020cut,
  title={Contrastive Learning for Unpaired Image-to-Image Translation},
  author={Taesung Park and Alexei A. Efros and Richard Zhang and Jun-Yan Zhu},
  booktitle={European Conference on Computer Vision},
  year={2020}
}

Contact

[email protected] or [email protected]

Acknowledgments

Our code is developed based on pytorch-CycleGAN-and-pix2pix and CUT. We thank the awesome work provided by CycleGAN and CUT. We thank pytorch-fid for FID computation. Great thanks to the anonymous reviewers, from both the main CVPR conference and NTIRE. They provided invaluable feedbacks and suggestions.

Owner
Computer vision.
Code for the paper "Adapting Monolingual Models: Data can be Scarce when Language Similarity is High"

Wietse de Vries • Martijn Bartelds • Malvina Nissim • Martijn Wieling Adapting Monolingual Models: Data can be Scarce when Language Similarity is High

Wietse de Vries 5 Aug 02, 2021
Reusable constraint types to use with typing.Annotated

annotated-types PEP-593 added typing.Annotated as a way of adding context-specific metadata to existing types, and specifies that Annotated[T, x] shou

125 Dec 26, 2022
Seg-Torch for Image Segmentation with Torch

Seg-Torch for Image Segmentation with Torch This work was sparked by my personal research on simple segmentation methods based on deep learning. It is

Eren Gölge 37 Dec 12, 2022
nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures.

nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures. Here you will find the scripts necessary to produce th

Jesse Willis 0 Jan 20, 2022
Data labels and scripts for fastMRI.org

fastMRI+: Clinical pathology annotations for the fastMRI dataset The fastMRI dataset is a publicly available MRI raw (k-space) dataset. It has been us

Microsoft 51 Dec 22, 2022
Understanding Convolutional Neural Networks from Theoretical Perspective via Volterra Convolution

nnvolterra Run Code Compile first: make compile Run all codes: make all Test xconv: make npxconv_test MNIST dataset needs to be downloaded, converted

1 May 24, 2022
A Strong Baseline for Image Semantic Segmentation

A Strong Baseline for Image Semantic Segmentation Introduction This project is an open source semantic segmentation toolbox based on PyTorch. It is ba

Clark He 49 Sep 20, 2022
Collection of common code that's shared among different research projects in FAIR computer vision team.

fvcore fvcore is a light-weight core library that provides the most common and essential functionality shared in various computer vision frameworks de

Meta Research 1.5k Jan 07, 2023
Tensorflow implementation for "Improved Transformer for High-Resolution GANs" (NeurIPS 2021).

HiT-GAN Official TensorFlow Implementation HiT-GAN presents a Transformer-based generator that is trained based on Generative Adversarial Networks (GA

Google Research 78 Oct 31, 2022
Irrigation controller for Home Assistant

Irrigation Unlimited This integration is for irrigation systems large and small. It can offer some complex arrangements without large and messy script

Robert Cook 176 Jan 02, 2023
Differentiable Optimizers with Perturbations in Pytorch

Differentiable Optimizers with Perturbations in PyTorch This contains a PyTorch implementation of Differentiable Optimizers with Perturbations in Tens

Jake Tuero 54 Jun 22, 2022
Lucid library adapted for PyTorch

Lucent PyTorch + Lucid = Lucent The wonderful Lucid library adapted for the wonderful PyTorch! Lucent is not affiliated with Lucid or OpenAI's Clarity

Lim Swee Kiat 520 Dec 26, 2022
Keras like implementation of Deep Learning architectures from scratch using numpy.

Mini-Keras Keras like implementation of Deep Learning architectures from scratch using numpy. How to contribute? The project contains implementations

MANU S PILLAI 5 Oct 10, 2021
Predictive AI layer for existing databases.

MindsDB is an open-source AI layer for existing databases that allows you to effortlessly develop, train and deploy state-of-the-art machine learning

MindsDB Inc 12.2k Jan 03, 2023
Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting (ICCV, 2021)

DKPNet ICCV 2021 Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting Baseline of DKPNet is availa

19 Oct 14, 2022
Robustness via Cross-Domain Ensembles

Robustness via Cross-Domain Ensembles [ICCV 2021, Oral] This repository contains tools for training and evaluating: Pretrained models Demo code Traini

Visual Intelligence & Learning Lab, Swiss Federal Institute of Technology (EPFL) 27 Dec 23, 2022
WRENCH: Weak supeRvision bENCHmark

🔧 What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development

Jieyu Zhang 176 Dec 28, 2022
PointPillars inference with TensorRT

A project demonstrating how to use CUDA-PointPillars to deal with cloud points data from lidar.

NVIDIA AI IOT 315 Dec 31, 2022
Code for the paper titled "Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks" (NeurIPS 2021 Spotlight).

Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks This repository contains the code and pre-trained

Hassan Dbouk 7 Dec 05, 2022
Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving

SalsaNext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving Abstract In this paper, we introduce SalsaNext f

308 Jan 04, 2023