Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving

Overview

PWC arXiv

SalsaNext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving

Abstract

In this paper, we introduce SalsaNext for the uncertainty-aware semantic segmentation of a full 3D LiDAR point cloud in real-time. SalsaNext is the next version of SalsaNet which has an encoder-decoder architecture where the encoder unit has a set of ResNet blocks and the decoder part combines upsampled features from the residual blocks. In contrast to SalsaNet, we introduce a new context module, replace the ResNet encoder blocks with a new residual dilated convolution stack with gradually increasing receptive fields and add the pixel-shuffle layer in the decoder. Additionally, we switch from stride convolution to average pooling and also apply central dropout treatment. To directly optimize the Jaccard index, we further combine the weighted cross-entropy loss with Lovasz-Softmax loss . We finally inject a Bayesian treatment to compute the epistemic and aleatoric uncertainties for each point in the cloud. We provide a thorough quantitative evaluation on the Semantic-KITTI dataset, which demonstrates that the proposed SalsaNext outperforms other state-of-the-art semantic segmentation.

Examples

Example Gif

Video

Inference of Sequence 13

Semantic Kitti Segmentation Scores

The up-to-date scores can be found in the Semantic-Kitti page.

How to use the code

First create the anaconda env with: conda env create -f salsanext_cuda10.yml --name salsanext then activate the environment with conda activate salsanext.

To train/eval you can use the following scripts:

  • Training script (you might need to chmod +x the file)
    • We have the following options:
      • -d [String] : Path to the dataset
      • -a [String]: Path to the Architecture configuration file
      • -l [String]: Path to the main log folder
      • -n [String]: additional name for the experiment
      • -c [String]: GPUs to use (default no gpu)
      • -u [String]: If you want to train an Uncertainty version of SalsaNext (default false) [Experimental: tests done so with uncertainty far used pretrained SalsaNext with Deep Uncertainty Estimation]
    • For example if you have the dataset at /dataset the architecture config file in /salsanext.yml and you want to save your logs to /logs to train "salsanext" with 2 GPUs with id 3 and 4:
      • ./train.sh -d /dataset -a /salsanext.yml -m salsanext -l /logs -c 3,4


  • Eval script (you might need to chmod +x the file)
    • We have the following options:
      • -d [String]: Path to the dataset
      • -p [String]: Path to save label predictions
      • -m [String]: Path to the location of saved model
      • -s [String]: Eval on Validation or Train (standard eval on both separately)
      • -u [String]: If you want to infer using an Uncertainty model (default false)
      • -c [Int]: Number of MC sampling to do (default 30)
    • If you want to infer&evaluate a model that you saved to /salsanext/logs/[the desired run] and you want to infer$eval only the validation and save the label prediction to /pred:
      • ./eval.sh -d /dataset -p /pred -m /salsanext/logs/[the desired run] -s validation -n salsanext

Pretrained Model

SalsaNext

Disclamer

We based our code on RangeNet++, please go show some support!

Citation

@misc{cortinhal2020salsanext,
    title={SalsaNext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving},
    author={Tiago Cortinhal and George Tzelepis and Eren Erdal Aksoy},
    year={2020},
    eprint={2003.03653},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
Pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Perspective"

Graph Neural Topic Model (GNTM) This is the pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Persp

Dazhong Shen 8 Sep 14, 2022
HistoKT: Cross Knowledge Transfer in Computational Pathology

HistoKT: Cross Knowledge Transfer in Computational Pathology Exciting News! HistoKT has been accepted to ICASSP 2022. HistoKT: Cross Knowledge Transfe

Mahdi S. Hosseini 5 Jan 05, 2023
VR Viewport Pose Model for Quantifying and Exploiting Frame Correlations

This repository contains the introduction to the collected VRViewportPose dataset and the code for the IEEE INFOCOM 2022 paper: "VR Viewport Pose Model for Quantifying and Exploiting Frame Correlatio

0 Aug 10, 2022
Code for our paper "Interactive Analysis of CNN Robustness"

Perturber Code for our paper "Interactive Analysis of CNN Robustness" Datasets Feature visualizations: Google Drive Fine-tuning checkpoints as saved m

Stefan Sietzen 0 Aug 17, 2021
Official Pytorch implementation of "Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video", CVPR 2021

TCMR: Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video Qualtitative result Paper teaser video Introduction This r

Hongsuk Choi 215 Jan 06, 2023
Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning"

VANET Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning" Introduction This is the implementation of article VAN

EMDATA-AILAB 23 Dec 26, 2022
A Python library for Deep Graph Networks

PyDGN Wiki Description This is a Python library to easily experiment with Deep Graph Networks (DGNs). It provides automatic management of data splitti

Federico Errica 194 Dec 22, 2022
Towards Multi-Camera 3D Human Pose Estimation in Wild Environment

PanopticStudio Toolbox This repository has a toolbox to download, process, and visualize the Panoptic Studio (Panoptic) data. Note: Sep-21-2020: Curre

335 Jan 09, 2023
The fastai book, published as Jupyter Notebooks

English / Spanish / Korean / Chinese / Bengali / Indonesian The fastai book These notebooks cover an introduction to deep learning, fastai, and PyTorc

fast.ai 17k Jan 07, 2023
Official repository for: Continuous Control With Ensemble DeepDeterministic Policy Gradients

Continuous Control With Ensemble Deep Deterministic Policy Gradients This repository is the official implementation of Continuous Control With Ensembl

4 Dec 06, 2021
wmctrl ported to Python Ctypes

work in progress wmctrl is a command that can be used to interact with an X Window manager that is compatible with the EWMH/NetWM specification. wmctr

Iyad Ahmed 22 Dec 31, 2022
PyTorch CZSL framework containing GQA, the open-world setting, and the CGE and CompCos methods.

Compositional Zero-Shot Learning This is the official PyTorch code of the CVPR 2021 works Learning Graph Embeddings for Compositional Zero-shot Learni

EML Tübingen 70 Dec 27, 2022
🕹️ Official Implementation of Conditional Motion In-betweening (CMIB) 🏃

Conditional Motion In-Betweening (CMIB) Official implementation of paper: Conditional Motion In-betweeening. Paper(arXiv) | Project Page | YouTube in-

Jihoon Kim 81 Dec 22, 2022
Code for "Adversarial Attack Generation Empowered by Min-Max Optimization", NeurIPS 2021

Min-Max Adversarial Attacks [Paper] [arXiv] [Video] [Slide] Adversarial Attack Generation Empowered by Min-Max Optimization Jingkang Wang, Tianyun Zha

Jingkang Wang 12 Nov 23, 2022
TRIQ implementation

TRIQ Implementation TF-Keras implementation of TRIQ as described in Transformer for Image Quality Assessment. Installation Clone this repository. Inst

Junyong You 115 Dec 30, 2022
[ArXiv 2021] Data-Efficient Instance Generation from Instance Discrimination

InsGen - Data-Efficient Instance Generation from Instance Discrimination Data-Efficient Instance Generation from Instance Discrimination Ceyuan Yang,

GenForce: May Generative Force Be with You 93 Dec 25, 2022
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
Open AI's Python library

OpenAI Python Library The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It incl

Pavan Ananth Sharma 3 Jul 10, 2022
Code for one-stage adaptive set-based HOI detector AS-Net.

AS-Net Code for one-stage adaptive set-based HOI detector AS-Net. Mingfei Chen*, Yue Liao*, Si Liu, Zhiyuan Chen, Fei Wang, Chen Qian. "Reformulating

Mingfei Chen 45 Dec 09, 2022
Cycle Consistent Adversarial Domain Adaptation (CyCADA)

Cycle Consistent Adversarial Domain Adaptation (CyCADA) A pytorch implementation of CyCADA. If you use this code in your research please consider citi

Hyunwoo Ko 2 Jan 10, 2022