MiniSom is a minimalistic implementation of the Self Organizing Maps

Overview

MiniSom

Self Organizing Maps

MiniSom is a minimalistic and Numpy based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial Neural Network able to convert complex, nonlinear statistical relationships between high-dimensional data items into simple geometric relationships on a low-dimensional display. Minisom is designed to allow researchers to easily build on top of it and to give students the ability to quickly grasp its details.

Updates about MiniSom are posted on Twitter.

Installation

Just use pip:

pip install minisom

or download MiniSom to a directory of your choice and use the setup script:

git clone https://github.com/JustGlowing/minisom.git
python setup.py install

How to use it

In order to use MiniSom you need your data organized as a Numpy matrix where each row corresponds to an observation or as list of lists like the following:

data = [[ 0.80,  0.55,  0.22,  0.03],
        [ 0.82,  0.50,  0.23,  0.03],
        [ 0.80,  0.54,  0.22,  0.03],
        [ 0.80,  0.53,  0.26,  0.03],
        [ 0.79,  0.56,  0.22,  0.03],
        [ 0.75,  0.60,  0.25,  0.03],
        [ 0.77,  0.59,  0.22,  0.03]]      

Then you can train MiniSom just as follows:

from minisom import MiniSom    
som = MiniSom(6, 6, 4, sigma=0.3, learning_rate=0.5) # initialization of 6x6 SOM
som.train(data, 100) # trains the SOM with 100 iterations

You can obtain the position of the winning neuron on the map for a given sample as follows:

som.winner(data[0])

For an overview of all the features implemented in minisom you can browse the following examples: https://github.com/JustGlowing/minisom/tree/master/examples

Export a SOM and load it again

A model can be saved using pickle as follows

import pickle
som = MiniSom(7, 7, 4)

# ...train the som here

# saving the som in the file som.p
with open('som.p', 'wb') as outfile:
    pickle.dump(som, outfile)

and can be loaded as follows

with open('som.p', 'rb') as infile:
    som = pickle.load(infile)

Note that if a lambda function is used to define the decay factor MiniSom will not be pickable anymore.

Explore parameters

You can use this dashboard to explore the effect of the parameters on a sample dataset: https://share.streamlit.io/justglowing/minisom/dashboard/dashboard.py

Examples

Here are some of the charts you'll see how to generate in the examples:

Seeds map Class assignment
Handwritteng digits mapping Hexagonal Topology som hexagonal toplogy
Color quantization Outliers detection

Other tutorials

How to cite MiniSom

@misc{vettigliminisom,
  title={MiniSom: minimalistic and NumPy-based implementation of the Self Organizing Map},
  author={Giuseppe Vettigli},
  year={2018},
  url={https://github.com/JustGlowing/minisom/},
}

Who uses Minisom?

Guidelines to contribute

  1. In the description of your Pull Request explain clearly what does it implements/fixes and your changes. Possibly give an example in the description of the PR. In cases that the PR is about a code speedup, report a reproducible example and quantify the speedup.
  2. Give your pull request a helpful title that summarises what your contribution does.
  3. Write unit tests for your code and make sure the existing tests are up to date. pytest can be used for this:
pytest minisom.py
  1. Make sure that there a no stylistic issues using pycodestyle:
pycodestyle minisom.py
  1. Make sure your code is properly commented and documented. Each public method needs to be documented as the existing ones.
Comments
  • Introducing possibility to train the SOM so that learning_rate and sigma are constant during one epoch.

    Introducing possibility to train the SOM so that learning_rate and sigma are constant during one epoch.

    This pull request introduces the possibility to train the SOM so that learning_rate and sigma are only being decreased after each epoch. During one epoch the SOM is updated once per given input vector (=len(data) times) with constant learning_rate and sigma. This should lead to a greater independence between the order of the input vectors and the resulting SOM.

    In order to use this feature, one only has to use train_epochs() instead of train().

    learning_rate and sigma could (should?) technically be updated only once every epoch but in order to change as little code as possible those parameters are still updated every time update() gets called (but with constant paramters during one epoch). This could be 'optimised' if desired.

    opened by jriege555 22
  • Fixed topographic_error() and quantization_error()

    Fixed topographic_error() and quantization_error()

    Problems:

    • The previous topographic_error() method is incorrect. bmu_1 and bmu_2 are not the coordinates of the best two matching units.
    • The previous topographic_error() and quantization_error() uses explicit for-loops, which is very slow.

    Fixes:

    • Fixed incorrect implementation of topographic_error() method.
    • Changed the topographic_error() and quantization_error() methods with vectorized implementation.
    opened by wei-zhang-thz 17
  • quantization error (theoretical question)

    quantization error (theoretical question)

    I have a question about the interpretability of the quantization error.

    How can we know that the SOM is reliable ? does the quantization error need to be lower than a certain value ?

    For exemple, in my case, i have a quantization errror of 7.0 which is quite high in comparison to the exemple given in the documentation. Does that mean my som is not reliable ?

    question 
    opened by lachhebo 13
  • Do you know why nodes change completely when I reran the same setup with varying number of iterations?

    Do you know why nodes change completely when I reran the same setup with varying number of iterations?

    Hey :-)

    First of all thank you for providing this tool, it seems very handy! I am using SOM with geopotential height anomalies over a given region as input variables to cluster meteorological circulation patterns (ca. 2000 observations). What is really strange is that the SOM nodes differ completely when I rerun the same setup with more iterations (e.g. doubling from 10000 to 20000). It produces nodes not only in a different order, but also such that have no analogue in the new SOM... Is there anything I am doing wrong?

    Thank you very much - below some details about the setup

    The example I am using most often is sigma=1 (Gaussian), lr=0.5, SOM sizes between 2x4 to 4x5. The problem occurs no matter the initialization (pca or random) and no matter the training (single, batch, random). My code is basically only:

    SOM

    som = MiniSom(som_m, som_n, ndims, sigma=sigma, learning_rate=lr, neighborhood_function='gaussian') som.pca_weights_init(somarr) som.train_batch(somarr,10000,verbose=True)

    ...

    plot

    for m in range(som_m): for n in range(som_n): ax... pltarr = som.get_weights()[m,n,:].reshape((nsomlat,nsomlon)) p = ax.contourf(somlons,somlats,pltarr,cmap='seismic', transform=ccrs.PlateCarree())

    question 
    opened by michel039 12
  • Vectorized the _activate function

    Vectorized the _activate function

    Great library, but I noticed that the training code for your SOMs is not vectorized. You use the fast_norm function a lot, which may be faster than linalg.norm for 1D arrays, but iterating over every spot in the SOM is a lot slower than just calling linalg.norm.

    This pull request replaces fast_norm with linalg.norm in 2 places where I saw iteration over the whole SOM. Some simple testing with a 100x100 SOM showed ~40x speedup on my laptop.

    After making the changes, the unit tests failed, which I believe is caused by incorrectly setting up the testing weights as a 2D array rather than a 3D array. So I changed that too, and now the unit tests pass. I also did a few rough tests of my own, and the results of self.winner(x) and the training seem to be the same as before.

    opened by AustinT 11
  • Time Series

    Time Series

    Hello! I am trying to use my time series data for the example uploaded, but I encounter this error when initializing pca. Also, the second image is the error that I encounter when I use random initialization.

    image image

    opened by jaybhiesantos 10
  • How to cluster images?

    How to cluster images?

    I would like to know how to cluster images instead of reading CSV I want to read all images from disk and cluster those images using SOM.

    Can you please share some examples?

    opened by balavenkatesh3322 10
  • Example: Hexagonal Topology bokeh

    Example: Hexagonal Topology bokeh

    Summary

    This branch actions on https://github.com/JustGlowing/minisom/issues/86 by adding to the existing examples/HexagonalTopology.ipynb notebook an interactive bokeh example of the equivalent matplotlib plot.

    The purpose of adding interactivity was so that further exploration could be conducted on the plot to see where the original data points are mapped to in the SOM space.

    Check

    • [x] This branch adds value to the main repository, so it is worthwhile to include.
    • [x] The bokeh plot is equivalent to the matplotlib plot.
    • [ ] The code is error free and works on your machine.
    • [x] The logic of showing data points in the hover tooltip is sound.

    Note

    This "closes #86".

    opened by avisionh 10
  • speed up in update method

    speed up in update method

    Hi! Thanks for sharing the library! I noticed that if you change the loop in the update method with an einsum operation you can speed up the training by some amount. Hope you find it useful. Christos

    opened by Sourmpis 10
  • Add topographic error calculation for hexagonal grid

    Add topographic error calculation for hexagonal grid

    This PR adds the functionality for Topographic Error calculation, computed by finding the first-best-matching and second-best-matching neurons in the hexagonal grid.

    Screenshot 2022-04-12 005139

    The topographic error calculation is based on the above equation, which considers if the first-best-matching and second-best-matching neurons are neighbors in the SOM grid.

    opened by TharindaDilshan 9
  • new visualizations

    new visualizations

    Hi, I have implemented a number of visualizations in the BasicUsage file. Addionally, I did some minor changes (mainly typos) in some other files. As this is my first use of github, I do not know how to separate both topics and make two pull requests... I hope this works out!

    opened by bijae 9
  • Topographic error wrong for hexagonal topography with rectangular grid

    Topographic error wrong for hexagonal topography with rectangular grid

    Hi,

    I am trying to get the topographic error from a SOM with 11x7 neurons, hexagonal topography.

    When I do, I get this error:

         21     return (-1, -1)
         22 y = som._weights.shape[1]
    ---> 23 coords = som.convert_map_to_euclidean((index % y, int(index/y)))
         24 return coords
    
    File ~/.local/lib/python3.8/site-packages/minisom.py:243, in MiniSom.convert_map_to_euclidean(self, xy)
        237 def convert_map_to_euclidean(self, xy):
        238     """Converts map coordinates into euclidean coordinates
        239     that reflects the chosen topology.
        240 
        241     Only useful if the topology chosen is not rectangular.
        242     """
    --> 243     return self._xx.T[xy], self._yy.T[xy]
    
    IndexError: index 8 is out of bounds for axis 1 with size 7
    

    I don't think this line of code makes sense:

    coords = som.convert_map_to_euclidean((index % y, int(index/y)))

    Shouldn't the parameters be inverted, e.g.:

    coords = som.convert_map_to_euclidean((int(index/y), index % y))

    Anyway, thanks for the amazing work!

    bug 
    opened by mbarison 6
  • Matching Matlab hyperparameters

    Matching Matlab hyperparameters

    Hi there!Thank you for this great work!

    I switched to using python from the Matlab, version of SOM However I found the result was quite different. Where I could have a perfect 100% in MatLab but somehow only get 19% in f1-score here.

    The only thing I changed from the default setting in Matlab is using a 10*10. som = MiniSom(10, 10, 4096, sigma=1.5, learning_rate=0.7,activation_distance='euclidean', neighborhood_function='gaussian', topology='hexagonal', random_seed=10) And this is what I had for my settings using minisom.

    Any suggestions so I could maybe recreate the result from Matlab?

    Thank you in advance!

    question 
    opened by AmousQiu 3
  • Is there a way to obtain a distance of each point to its BMU?

    Is there a way to obtain a distance of each point to its BMU?

    Hi, first and foremost thank you for your great work and allowing to implement SOM algorithm in such convienent way. I wanted to ask if there is a possibility to obtain a kind of list with the distances between each point and its Best Matching Unit (Node) on trained SOM grid? I have read the documentation and saw different attributes for the SOM object, however it appears to me that none of them allow to return the (euclidean) distance to BMU. Thanks in advance for support!

    question 
    opened by JMiklaszewski 1
  • Is there an option to obtain the BMU value directly?

    Is there an option to obtain the BMU value directly?

    Hi there,

    I am trying to use BMU values a metric to classify my data. Features are seismic attributes. Your function “distance_from_weights” was my first guess but it´s not exporting BMUS directly. We do have to manipulate it to remove the second BMU.

    np.argsort(distance_from_weights(data), axis=1)[:, :2] -----> np.argsort(distance_from_weights(data), axis=1)[:, :1]

    Do you mind to build that function?

    question 
    opened by akol67 1
  • Wrong value in topographic error function?

    Wrong value in topographic error function?

    So a topographic error occurs when the two bmu of a sample are not adjacent. Shouldn't then t = 1? If the bmu are two hops apart in a corner, their euclidean distance is sqrt(2) = 1.4142 . So with distance > 1.42 this doesn't count as an error. Or am I missing something?

    question 
    opened by SandroMartens 0
  • Example spatio-temporal climate data

    Example spatio-temporal climate data

    This pull request is to load a SOM example on climate data notebook, which is usually 2D (time, lat, lon).

    I've been looking a lot into SOM examples, and it's hard to find examples on climate data...so I hope this notebook can help future users (and also me, if you find something wrong on the use).

    For the example, I've used the tutorial dataset from Xarray.

    opened by carocamargo 2
Releases(2.3.0)
Owner
Giuseppe Vettigli
Data Scientist, teaching fellow, Python enthusiast, fearless visionarist, lateral thinker.
Giuseppe Vettigli
Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face Manipulation" published in CVPR 2020.

FFD Source Code Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face M

88 Nov 22, 2022
MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction

MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction This is the official implementation for the ICCV 2021 paper Learning Sign

110 Dec 20, 2022
[WWW 2021] Source code for "Graph Contrastive Learning with Adaptive Augmentation"

GCA Source code for Graph Contrastive Learning with Adaptive Augmentation (WWW 2021) For example, to run GCA-Degree under WikiCS, execute: python trai

Big Data and Multi-modal Computing Group, CRIPAC 97 Jan 07, 2023
This repository implements variational graph auto encoder by Thomas Kipf.

Variational Graph Auto-encoder in Pytorch This repository implements variational graph auto-encoder by Thomas Kipf. For details of the model, refer to

DaehanKim 215 Jan 02, 2023
Awesome AI Learning with +100 AI Cheat-Sheets, Free online Books, Top Courses, Best Videos and Lectures, Papers, Tutorials, +99 Researchers, Premium Websites, +121 Datasets, Conferences, Frameworks, Tools

All about AI with Cheat-Sheets(+100 Cheat-sheets), Free Online Books, Courses, Videos and Lectures, Papers, Tutorials, Researchers, Websites, Datasets

Niraj Lunavat 1.2k Jan 01, 2023
A Python library for unevenly-spaced time series analysis

traces A Python library for unevenly-spaced time series analysis. Why? Taking measurements at irregular intervals is common, but most tools are primar

Datascope Analytics 516 Dec 29, 2022
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
Classic Papers for Beginners and Impact Scope for Authors.

There have been billions of academic papers around the world. However, maybe only 0.0...01% among them are valuable or are worth reading. Since our limited life has never been forever, TopPaper provi

Qiulin Zhang 228 Dec 18, 2022
A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling"

SelfGNN A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling" paper, which will appear in Th

Zekarias Tilahun 24 Jun 21, 2022
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion". Paper link: https://arxiv.org/abs/2111.10

Ziyao Zeng 14 Feb 26, 2022
Scaling Vision with Sparse Mixture of Experts

Scaling Vision with Sparse Mixture of Experts This repository contains the code for training and fine-tuning Sparse MoE models for vision (V-MoE) on I

Google Research 290 Dec 25, 2022
Domain Generalization with MixStyle, ICLR'21.

MixStyle This repo contains the code of our ICLR'21 paper, "Domain Generalization with MixStyle". The OpenReview link is https://openreview.net/forum?

Kaiyang 208 Dec 28, 2022
Parris, the automated infrastructure setup tool for machine learning algorithms.

README Parris, the automated infrastructure setup tool for machine learning algorithms. What Is This Tool? Parris is a tool for automating the trainin

Joseph Greene 319 Aug 02, 2022
Implementation of the Point Transformer layer, in Pytorch

Point Transformer - Pytorch Implementation of the Point Transformer self-attention layer, in Pytorch. The simple circuit above seemed to have allowed

Phil Wang 501 Jan 03, 2023
Detectorch - detectron for PyTorch

Detectorch - detectron for PyTorch (Disclaimer: this is work in progress and does not feature all the functionalities of detectron. Currently only inf

Ignacio Rocco 558 Dec 23, 2022
Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space

extrinsic2pyramid Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space Intro A very simple and straightforward modu

JEONG HYEONJIN 106 Dec 28, 2022
Zalo AI challenge 2021 task hum to song

Zalo AI challenge 2021 task Hum to Song pipeline: Chuẩn bị dữ liệu cho quá trình train: Sửa các file đường dẫn trong config/preprocess.yaml raw_path:

Vo Van Phuc 105 Dec 16, 2022
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

44 Dec 09, 2022
A collection of scripts I developed for personal and working projects.

A collection of scripts I developed for personal and working projects Table of contents Introduction Repository diagram structure List of scripts pyth

Gianluca Bianco 109 Dec 26, 2022
Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning

Here is deepparse. Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning. Use deepparse to Use the pr

GRAAL/GRAIL 192 Dec 20, 2022