Numerical-computing-is-fun - Learning numerical computing with notebooks for all ages.

Overview

As much as this series is to educate aspiring computer programmers and data scientists of all ages and all backgrounds, it is also a reminder to myself. After playing with computers and numbers for nearly 4 decades, I've also made this to keep in mind how to have fun with computers and maths.

Using Jupyter notebooks as an interactive learning medium, this series provides an introduction to:

  • Computer Science
  • Python programming language
  • Numerical computing
  • Numbers theory
  • Prime numbers
  • Data visualization
  • Deep learning

Interactive in Mybinder:

Binder

Interative in Azure (requires logging in):

Static in Nbviewer:

Use the link provided for each part below the corresponding title.

Launch in Binder (no login required)

Click the badge in the corresponding part below.

Part 1 : Introduction

Start learning here or

Binder

What you will learn:

  • print is the command to print something on the screen
  • Math operations are very easy to perform in Python
  • Python deals with numbers based on data types
  • In Python there are two numerical data types; int and float
  • Functions are powerful tools to easily perform various operations
  • Functions may accept arguments (parameters) as input
  • Functions are computer processes, and arguments are what is being processed
  • It's very easy to create your own functions

Part 2 : Prime Numbers

Continue learning here.

Binder

What you will learn:

  • Prime numbers relate with divisibility
  • Divisibility means that when one number is divided by other, the product is not a whole number
  • A prime number is any number that is divisible only by itself and 1
  • Binary means 0 and 1
  • Boolean logic is the binary language of computers
  • Python gives us an easy to use way to instruct computers
  • Boolean logic statements involve is, is not, and and or statements
  • Boolean statements can be joined together
  • Boolean statements always return either True or False as output
  • It's easy to perform computing operations with small numbers
  • The biggest prime number is a really big number
  • Very big numbers require vast networks of computers joined together

Part 3 : Algorithms Overview

Continue learning here.

Binder

What you will learn:

  • Algoritms are like insides of factories
  • Algoritms process inputs to produce outputs
  • Conditional statements are a tool for putting boolean logic in to action
  • Conditional statements are part of "flow control"
  • Flow controls give us the ability to create rules for computer programs
  • The three conditional statements in Python are if, else and elif
  • Even just if alone can be used to create a conditional statement

Part 4: Automation Overview

Continue learning here.

Binder

What you will learn:

  • Generally speaking computer programs are focused on process automation
  • Loops are a highly effective method for automation
  • With small changes to our code, we can make big improvements in capability
  • Sometimes we can get more done with less code!
  • It's very convinient to store values in to memory
  • Computer memory is nothing like human memory, and also not like a safe deposit box
  • Any value can be stored in to memory
  • Numbers can be automatically generated with range function
  • It's meaningful to learn new concepts by gradually improving things

CREDITS

Numerical Computing is Fun is an Eka Foundation project.

Owner
EKA foundation
EKA foundation
Rename Images with Auto Generated Neural Image Captions

Recaption Images with Generated Neural Image Caption Example Usage: Commandline: Recaption all images from folder /home/feng/Downloads/images to folde

feng wang 3 May 01, 2022
An end-to-end image translation model with weight-map for color constancy

CCUnet An end-to-end image translation model with weight-map for color constancy 1. Download the dataset (take Colorchecker_recommended dataset as an

Jianhui Qiu 1 Dec 21, 2021
X-modaler is a versatile and high-performance codebase for cross-modal analytics.

X-modaler X-modaler is a versatile and high-performance codebase for cross-modal analytics. This codebase unifies comprehensive high-quality modules i

910 Dec 28, 2022
Source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals.

PatchGraph This repository contains the source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals. Installation Creat

Paloma Sodhi 11 Dec 15, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
Evaluating different engineering tricks that make RL work

Reinforcement Learning Tricks, Index This repository contains the code for the paper "Distilling Reinforcement Learning Tricks for Video Games". Short

Anssi 15 Dec 26, 2022
This repository contains the source codes for the paper AtlasNet V2 - Learning Elementary Structures.

AtlasNet V2 - Learning Elementary Structures This work was build upon Thibault Groueix's AtlasNet and 3D-CODED projects. (you might want to have a loo

Théo Deprelle 123 Nov 11, 2022
Pytorch implementation of Implicit Behavior Cloning.

Implicit Behavior Cloning - PyTorch (wip) Pytorch implementation of Implicit Behavior Cloning. Install conda create -n ibc python=3.8 pip install -r r

Kevin Zakka 49 Dec 25, 2022
Framework that uses artificial intelligence applied to mathematical models to make predictions

LiconIA Framework that uses artificial intelligence applied to mathematical models to make predictions Interface Overview Table of contents [TOC] 1 Ar

4 Jun 20, 2021
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
Efficient Multi Collection Style Transfer Using GAN

Proposed a new model that can make style transfer from single style image, and allow to transfer into multiple different styles in a single model.

Zhaozheng Shen 2 Jan 15, 2022
How to Train a GAN? Tips and tricks to make GANs work

(this list is no longer maintained, and I am not sure how relevant it is in 2020) How to Train a GAN? Tips and tricks to make GANs work While research

Soumith Chintala 10.8k Dec 31, 2022
Official code of the paper "ReDet: A Rotation-equivariant Detector for Aerial Object Detection" (CVPR 2021)

ReDet: A Rotation-equivariant Detector for Aerial Object Detection ReDet: A Rotation-equivariant Detector for Aerial Object Detection (CVPR2021), Jiam

csuhan 334 Dec 23, 2022
[BMVC 2021] Official PyTorch Implementation of Self-supervised learning of Image Scale and Orientation Estimation

Self-Supervised Learning of Image Scale and Orientation Estimation (BMVC 2021) This is the official implementation of the paper "Self-Supervised Learn

Jongmin Lee 17 Nov 10, 2022
Deep motion generator collections

GenMotion GenMotion (/gen’motion/) is a Python library for making skeletal animations. It enables easy dataset loading and experiment sharing for synt

23 May 24, 2022
Negative Interactions for Improved Collaborative Filtering:

Negative Interactions for Improved Collaborative Filtering: Don’t go Deeper, go Higher This notebook provides an implementation in Python 3 of the alg

Harald Steck 21 Mar 05, 2022
《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)

A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science

Artёm Komarichev 44 Feb 24, 2022
SAS: Self-Augmentation Strategy for Language Model Pre-training

SAS: Self-Augmentation Strategy for Language Model Pre-training This repository

Alibaba 5 Nov 02, 2022
Manage the availability of workspaces within Frappe/ ERPNext (sidebar) based on user-roles

Workspace Permissions Manage the availability of workspaces within Frappe/ ERPNext (sidebar) based on user-roles. Features Configure foreach workspace

Patrick.St. 18 Sep 26, 2022
HW3 ― GAN, ACGAN and UDA

HW3 ― GAN, ACGAN and UDA In this assignment, you are given datasets of human face and digit images. You will need to implement the models of both GAN

grassking100 1 Dec 13, 2021