Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

Overview

This repository has been ⛔️ DEPRECATED. Please take a look at our fairly recent work:

Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification [paper] [Code]

Deep Learning for Land-cover Classification in Hyperspectral Images

Hyperspectral images are images captured in multiple bands of the electromagnetic spectrum. This project is focussed at the development of Deep Learned Artificial Neural Networks for robust landcover classification in hyperspectral images. Land-cover classification is the task of assigning to every pixel, a class label that represents the type of land-cover present in the location of the pixel. It is an image segmentation/scene labeling task. The following diagram describes the task.



This website describes our explorations with the performance of Multi-Layer Perceptrons and Convolutional Neural Networks at the task of Land-cover Classification in Hyperspectral Images. Currently we perform pixel-wise classification.


Dataset =======

We have performed our experiments on the Indian Pines Dataset. The following are the particulars of the dataset:

  • Source: AVIRIS sensor
  • Region: Indian Pines test site over north-western Indiana
  • Time of the year: June
  • Wavelength range: 0.4 – 2.5 micron
  • Number of spectral bands: 220
  • Size of image: 145x145 pixel
  • Number of land-cover classes: 16

Input data format =================

Each pixel is described by an NxN patch centered at the pixel. N denotes the size of spatial context used for making the inference about a given pixel.

The input data was divided into training set (75%) and a test set (25%).

Hardware used

The neural networks were trained on a machine with dual Intel Xeon E5-2630 v2 CPUs, 32 GB RAM and NVIDIA Tesla K-20C GPU.


Multi-Layer Perceptron

Multi-Layer Perceptron (MLP) is an artificial neural network with one or more hidden layers of neurons. MLP is capable of modelling highly non-linear functions between the input and output and forms the basis of Deep-learning Neural Network (DNN) models.

Architecture of Multi-Layer Perceptron used

input- [affine - relu] x 3 - affine - softmax

(Schematic representation below)

Ndenotes the size of the input patch.


Specifics of the learning algorithm

The following are the details of the learning algorithm used:

  • Parameter update algorithm used: Adagrad

    • Batch size: 200
    • Learning rate: 0.01
  • Number of steps: until best validation performance


Performance

Decoding generated for different input patch sizes:


Convolutional Neural Network

(CNN or ConvNet) are a special category of artificial neural networks designed for processing data with a gridlike structure. The ConvNet architecture is based on sparse interactions and parameter sharing and is highly effective for efficient learning of spatial invariances in images. There are four kinds of layers in a typical ConvNet architecture: convolutional (conv), pooling (pool), fullyconnected (affine) and rectifying linear unit (ReLU). Each convolutional layer transforms one set of feature maps into another set of feature maps by convolution with a set of filters.

Architecture of Convolutional Neural Network used

input- [conv - relu - maxpool] x 2 - [affine - relu] x 2 - affine - softmax

(Schematic representation below)

Ndenotes the size of the input patch.


Specifics of the learning algorithm

The following are the details of the learning algorithm used:

  • Parameter update algorithm used: Adagrad

    • Batch size: 100
    • Learning rate: 0.01
  • Number of steps: until best validation performance


Performance

Decoding generated for different input patch sizes:



Description of the repository

  • IndianPines_DataSet_Preparation_Without_Augmentation.ipynb - does the following operations:

    • Loads the Indian Pines dataset
    • Scales the input between [0,1]
    • Mean normalizes the channels
    • Makes training and test splits
    • Extracts patches of given size
    • Oversamples the training set for balancing the classes
  • Spatial_dataset.py - provides a highly flexible Dataset class for handling the Indian Pines data.

  • patch_size.py - specify the required patch-size here.

  • IndianPinesCNN.ipynb- builds the TensorFlow Convolutional Neural Network and defines the training and evaluation ops:

    • inference() - builds the model as far as is required for running the network forward to make predictions.
    • loss() - adds to the inference model the layers required to generate loss.
    • training() - adds to the loss model the Ops required to generate and apply gradients.
    • evaluation() - calcuates the classification accuracy
  • CNN_feed.ipynb - trains and evaluates the Neural Network using a feed dictionary

  • Decoder_Spatial_CNN.ipynb - generates the landcover classification of an input hyperspectral image for a given trained network

  • IndianPinesMLP.py - builds the TensorFlow Multi-layer Perceptron and defines the training and evaluation ops:

    • inference() - builds the model as far as is required for running the network forward to make predictions.
    • loss() - adds to the inference model the layers required to generate loss.
    • training() - adds to the loss model the Ops required to generate and apply gradients.
    • evaluation() - calcuates the classification accuracy
  • MLP_feed.ipynb - trains and evaluates the MLP using a feed dictionary

  • Decoder_Spatial_MLP.ipynb - generates the landcover classification of an input hyperspectral image for a given trained network

  • credibility.ipynb - summarizes the predictions of an ensemble and produces the land-cover classification and class-wise confusion matrix.


Setting up the experiment

  • Download the Indian Pines data-set from here.
  • Make a directory named Data within the current working directory and copy the downloaded .mat files Indian_pines.mat and Indian_pines_gt.mat in this directory.

In order to make sure all codes run smoothly, you should have the following directory subtree structure under your current working directory:

|-- IndianPines_DataSet_Preparation_Without_Augmentation.ipynb
|-- Decoder_Spatial_CNN.ipynb
|-- Decoder_Spatial_MLP.ipynb
|-- IndianPinesCNN.ipynb
|-- CNN_feed.ipynb
|-- MLP_feed.ipynb
|-- credibility.ipynb
|-- IndianPinesCNN.py
|-- IndianPinesMLP.py
|-- Spatial_dataset.py
|-- patch_size.py
|-- Data
|   |-- Indian_pines_gt.mat
|   |-- Indian_pines.mat


  • Set the required patch-size value (eg. 11, 21, etc) in patch_size.py and run the following notebooks in order:
    1. IndianPines_DataSet_Preparation_Without_Augmentation.ipynb
    2. CNN_feed.ipynb OR MLP_feed.ipynb (specify the number of fragments in the training and test data in the variables TRAIN_FILES and TEST_FILES)
    3. Decoder_Spatial_CNN.ipynb OR Decoder_Spatial_MLP.ipynb (set the required checkpoint to be used for decoding in the model_name variable)

Outputs will be displayed in the notebooks.


Acknowledgement

This repository was developed by Anirban Santara, Ankit Singh, Pranoot Hatwar and Kaustubh Mani under the supervision of Prof. Pabitra Mitra during June-July, 2016 at the Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, India. The project is funded by Satellite Applications Centre, Indian Space Research Organization (SAC-ISRO).

library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

Steven G. Johnson 1.4k Dec 25, 2022
PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.

Stochastic CSLR This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuou

Zhe Niu 28 Dec 19, 2022
N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting

N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting Recent progress in neural forecasting instigated significant improvements in the

Cristian Challu 82 Jan 04, 2023
MLJetReconstruction - using machine learning to reconstruct jets for CMS

MLJetReconstruction - using machine learning to reconstruct jets for CMS The C++ data extraction code used here was based heavily on that foundv here.

ALPhA Davidson 0 Nov 17, 2021
AutoDeeplab / auto-deeplab / AutoML for semantic segmentation, implemented in Pytorch

AutoML for Image Semantic Segmentation Currently this repo contains the only working open-source implementation of Auto-Deeplab which, by the way out-

AI Necromancer 299 Dec 17, 2022
DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations

DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations This repository contains the data, scripts and baseline co

Alexa 51 Dec 17, 2022
A repository for interferometer controller code.

dses-interferometer-controller A repository for interferometer controller code, hardware, and simulations. See dses.science for more information on th

Eli Reed 1 Jan 17, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
Hepsiburada - Hepsiburada Urun Bilgisi Cekme

Hepsiburada Urun Bilgisi Cekme from hepsiburada import Marka nike = Marka("nike"

Ilker Manap 8 Oct 26, 2022
A selection of State Of The Art research papers (and code) on human locomotion (pose + trajectory) prediction (forecasting)

A selection of State Of The Art research papers (and code) on human trajectory prediction (forecasting). Papers marked with [W] are workshop papers.

Karttikeya Manglam 40 Nov 18, 2022
It is the assignment for COMP 576 in Rice University

COMP-576 It is the assignment for COMP 576 in Rice University There are two programming assignments and one Final Project. Assignment 1: It is a MLP a

Maojie Tang 1 Nov 25, 2021
Implementation of "Learning to Match Features with Seeded Graph Matching Network" ICCV2021

SGMNet Implementation PyTorch implementation of SGMNet for ICCV'21 paper "Learning to Match Features with Seeded Graph Matching Network", by Hongkai C

87 Dec 11, 2022
The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction".

LEAR The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction". See below for an overview of

杨攀 93 Jan 07, 2023
An introduction to bioimage analysis - http://bioimagebook.github.io

Introduction to Bioimage Analysis This book tries explain the main ideas of image analysis in a practical and engaging way. It's written primarily for

Bioimage Book 20 Nov 28, 2022
Machine learning library for fast and efficient Gaussian mixture models

This repository contains code which implements the Stochastic Gaussian Mixture Model (S-GMM) for event-based datasets Dependencies CMake Premake4 Blaz

Omar Oubari 1 Dec 19, 2022
Official repository for "On Generating Transferable Targeted Perturbations" (ICCV 2021)

On Generating Transferable Targeted Perturbations (ICCV'21) Muzammal Naseer, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Fatih Porikli Paper:

Muzammal Naseer 46 Nov 17, 2022
Long Expressive Memory (LEM)

Long Expressive Memory for Sequence Modeling This repository contains the implementation to reproduce the numerical experiments of the paper Long Expr

Konstantin Rusch 47 Dec 17, 2022
Image to Image translation, image generataton, few shot learning

Semi-supervised Learning for Few-shot Image-to-Image Translation [paper] Abstract: In the last few years, unpaired image-to-image translation has witn

yaxingwang 49 Nov 18, 2022
Data and analysis code for an MS on SK VOC genomes phenotyping/neutralisation assays

Description Summary of phylogenomic methods and analyses used in "Immunogenicity of convalescent and vaccinated sera against clinical isolates of ance

Finlay Maguire 1 Jan 06, 2022
This respository includes implementations on Manifoldron: Direct Space Partition via Manifold Discovery

Manifoldron: Direct Space Partition via Manifold Discovery This respository includes implementations on Manifoldron: Direct Space Partition via Manifo

dayang_wang 4 Apr 28, 2022