This is the open-source reference implementation of the SIGGRAPH 2021 paper Intersection-free Rigid Body Dynamics.

Overview

Rigid IPC

Build License

Robust, intersection-free, simulations of rigid bodies.

This is the open-source reference implementation of the SIGGRAPH 2021 paper Intersection-free Rigid Body Dynamics.

Files

  • src/: source code
  • cmake/ and CMakeLists.txt: CMake files
  • fixtures/: input scripts to rerun all examples in our paper
  • meshes/: input meshes used by the fixtures
  • tests/: unit-tests
  • tools/: Python and Bash scripts for generating and processing results
  • comparisons/: files used in comparisons with other rigid body simulators
  • python/: Python binding files
  • notebooks/: Jupyter notebooks

Build

To build the project, use the following commands from the root directory of the project:

mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
make -j4

Dependencies

All dependancies are downloaded through CMake depending on the build options. The following libraries are used in this project:

  • IPC Toolkit: common IPC functions
  • Eigen: linear algebra
  • libigl: basic geometry functions, predicates, and viewer
  • TBB: parallelization
  • Tight Inclusion CCD: correct (conservative) continuous collision detection between triangle meshes in 3D
  • spdlog: logging information
  • filib: interval arithmetic
  • Niels Lohmann's JSON: parsing input JSON scenes
  • tinygltf: exporting simulation animation to GLTF format
  • finite-diff: finite difference comparisons
    • Only used by the unit tests and when RIGID_IPC_WITH_DERIVATIVE_CHECK=ON

Optional

Scenes

We take as input a single JSON file that specifies the mesh and initial conditions for each body. The fixtures directory contains example scenes.

Python Bindings

We expose some functionality of Rigid IPC through Python. This is still in development and lacks the ability to script many features available in the full simulator.

To build the Python bindings use the setup.py script:

python setup.py install
Comments
  • cmake fails on Linux Mint 19.3

    cmake fails on Linux Mint 19.3

    Here is what I typed:

    $ mkdir build
    $ cd build
    $ cmake -DCMAKE_BUILD_TYPE=Release ..
    -- GCC >= 4.9 detected, enabling colored diagnostics
    -- Third-party: creating target 'Eigen3::Eigen'
    -- Third-party: creating target 'igl::core'
    -- Creating target: igl::core (igl)
    -- Creating target: igl::opengl (igl_opengl)
    -- Creating target: igl::opengl_glfw (igl_opengl_glfw)
    -- Using X11 for window creation
    -- Creating target: igl::opengl_glfw_imgui (igl_opengl_glfw_imgui)
    -- Creating target: igl::png (igl_png)
    -- Creating target: igl::predicates (igl_predicates)
    -- Third-party: creating target 'nlohmann::json'
    -- Third-party: creating target 'spdlog::spdlog'
    -- Build spdlog: 1.9.0
    -- Build type: Release
    -- Generating install
    -- Third-party: creating target 'finitediff::finitediff'
    -- Third-party: creating targets 'Boost::boost'
    -- Fetching Boost
    -- Fetching Boost - done
    -- Boost found: 1.71.0 /home/glenn/src/github.com/ipc-sim/rigid-ipc/build/_deps/boost-src
    -- Found the following ICU libraries:
    --   uc (required)
    --   dt (required)
    --   i18n (required)
    -- Third-party: creating target 'TBB::tbb'
    -- Third-party: creating target 'tight_inclusion::tight_inclusion'
    -- Tight-Inclusion CCD bottom-level project
    -- GCC >= 4.9 detected, enabling colored diagnostics
    -- Searching for AVX...
    -- Using CPU native flags for AVX optimization:  -march=native
    --   Found AVX 2.0 extensions, using flags:  -march=native -mavx2 -mno-avx512f -mno-avx512pf -mno-avx512er -mno-avx512cd
    -- Using Double Precision Floating Points
    -- Third-party: creating target 'PolyFEM::polysolve'
    [ 11%] Performing download step (git clone) for 'polysolve-populate'
    Cloning into 'polysolve-src'...
    fatal: reference is not a tree: a94e9b8ed8302d4b479533c67419f31addb1e987
    CMake Error at polysolve-subbuild/polysolve-populate-prefix/tmp/polysolve-populate-gitclone.cmake:40 (message):
      Failed to checkout tag: 'a94e9b8ed8302d4b479533c67419f31addb1e987'
    
    
    CMakeFiles/polysolve-populate.dir/build.make:110: recipe for target 'polysolve-populate-prefix/src/polysolve-populate-stamp/polysolve-populate-download' failed
    make[2]: *** [polysolve-populate-prefix/src/polysolve-populate-stamp/polysolve-populate-download] Error 1
    CMakeFiles/Makefile2:94: recipe for target 'CMakeFiles/polysolve-populate.dir/all' failed
    make[1]: *** [CMakeFiles/polysolve-populate.dir/all] Error 2
    Makefile:102: recipe for target 'all' failed
    make: *** [all] Error 2
    
    CMake Error at /usr/local/cmake-3.18.2-Linux-x86_64/share/cmake-3.18/Modules/FetchContent.cmake:987 (message):
      Build step for polysolve failed: 2
    Call Stack (most recent call first):
      /usr/local/cmake-3.18.2-Linux-x86_64/share/cmake-3.18/Modules/FetchContent.cmake:1082:EVAL:2 (__FetchContent_directPopulate)
      /usr/local/cmake-3.18.2-Linux-x86_64/share/cmake-3.18/Modules/FetchContent.cmake:1082 (cmake_language)
      /usr/local/cmake-3.18.2-Linux-x86_64/share/cmake-3.18/Modules/FetchContent.cmake:1125 (FetchContent_Populate)
      cmake/recipes/polysolve.cmake:14 (FetchContent_MakeAvailable)
      CMakeLists.txt:225 (include)
    
    
    -- Configuring incomplete, errors occurred!
    See also "/home/glenn/src/github.com/ipc-sim/rigid-ipc/build/CMakeFiles/CMakeOutput.log".
    See also "/home/glenn/src/github.com/ipc-sim/rigid-ipc/build/CMakeFiles/CMakeError.log".
    

    Any ideas how to fix this? It looks like a bad git reference in polysolve-src, possibly.

    Thank you!

    opened by gmlewis 6
  • Missing files or invalid fixture scripts?

    Missing files or invalid fixture scripts?

    I tried some of the examples in the "fixtures" directory, and the simulator works great! Nice work!

    However, I discovered that there are some examples that don't run either because their mesh files don't exist in the repo or because of some other problem.

    For example, this example is missing its meshes: https://github.com/ipc-sim/rigid-ipc/blob/main/fixtures/3D/mechanisms/expanding-lock-box.json#L11-L57

    This example says [2021-09-30 19:57:28.039] [error] Invalid Json file: https://github.com/ipc-sim/rigid-ipc/blob/main/fixtures/2D/compactor.json

    opened by gmlewis 3
  • Added TimeStepping (WIP)

    Added TimeStepping (WIP)

    Updated clang-format so long chains of parameters are shown one on each line (don't hate me)

    IO

    • Added rigid-body fixtures (NEW FORMAT!)
      • Added rigid-body reader
    • Added json/eigen helper to read/write matrices

    OPT

    • Added is_barrier method (and get/set epsilon) to CollisionConstraint so we don't need to pass the BarrierConstraint to the solver
      • Updated barrier constraint to use them
    • Added accessors on OptimizationProblem for barrier case
      • updated ad-hoc problem too since it was used on unit-tests

    PHYSICS

    • updated RigidBody class to

      • include theta: position is now length 3 (x, y, theta)
      • compute mass and moment of intertia (needed for forces)
      • added position of previous step
      • added differentiable world vertices, and flag to obtain the vertices of the current or previous step.
      • TODO: remove world_displacements, we should use world_vertices instead!
    • Added RigidBodyAssembler (to replace RigidBodyAssembler once finished)

      • init method only computes inmmutable information
      • other methods compute assembly on call

    SIMULATION

    • Added new main file for simulation
    • Added UISimSate and UIMenu for the simulation UI
    • TODO: merge with collision-debugging UI or add export of single problematic step
    opened by panchagil 1
  • Newton fix

    Newton fix

    I updated the Newton solver to fail to gradient descent if the line search fails. This helps the optimization make progress even when the Hessian is ill-conditioned. The next step after this pull request is merged is to add a quasi-Newton solver (e.g. BFGS).

    • Exposed initialization of barrier epsilon in the UI.
    • Separated line search into its own file.
    • Newton method now fails to gradient descent.
    opened by zfergus 1
  • Chain rule refactor

    Chain rule refactor

    Refactor structure of project. Now we have only 4 problems

    • Rigid Body Physics + Distance Barrier Constraint + Barrier Solver

    • Particles Physics + Distance Barrier Constraint + Barrier Solver

    • Rigid Body Physics + Volume Constraint + NCP Solver

    • Particles Physics + Volume Constraint + NCP Solver

    • Remove some base classes that were forcing us to write more functions than neccesary

      • Base OptimizationProblem is gone, now we have some interfaces for the different problems
      • Base CollisionConstraint remainds but implements few methods.
    • Removed exmplicit template instantiation and instead created .tpp files to keep template implementations

    opened by panchagil 0
  • Combined the distance barrier and CCD broad-phases

    Combined the distance barrier and CCD broad-phases

    • Exposed broad-phase in order to get the candidate collisions
    • Modified DistanceBarrier::detectCollisions to first build a common collision candidate set
    • Using this set run the narrow-phase of both the barrier and the CCD
    • TODO: Expose the ev_candidates as a member variable.
    • TODO: Add a is_collision_candidates_frozen flag to cause detectCollisions to not run the broad-phase again.
    opened by zfergus 0
  • Added BFGS and gradient descent solvers

    Added BFGS and gradient descent solvers

    • Added BFGS and GD to barrier solver as inner solvers
    • Needed to move some functionality out of NewtonSolver and into OptimizationSolvers
    • TODO: Move free_dof out of the OptimizationSolver and into the optimization problem with the eval_* functions using free_dof to remove elements.
    opened by zfergus 0
  • Added Rigid Body System Derivatives and  Rigid Body Problem

    Added Rigid Body System Derivatives and Rigid Body Problem

    • Added python notebook to get exact derivatives of RB transformation
    • Moved rigid body to its own file (out of rigid_body_system)
      • Added tests for RB gradient/hessian comparing with exact solutions
    • Added assembly of gradient and hessian on RB-System
      • Added test for RB-System comparing with exact solutions

    Added Rigid Body Problem

    • Added Rigid Body Problem to opt/
    • Implemented Functional, its gradient and hessian
      • tested against finite differences
    • Added tensor util to compute the multiplication of (1x2N) * (2N x 3B x 3B) used by the chain rule.
    opened by panchagil 0
  • Rigid body system

    Rigid body system

    • Moved rigid bodies to physics/ folder
      • added RigidBodySystem that keeps list of RB.
    • Moved solvers to solvers/ folder
    • Removed (a lot of)unused code
    opened by panchagil 0
  • Rigid bodies

    Rigid bodies

    Add UI features for controlling rigid bodies individually

    • Added gradient and hessian of compute_particle_displacements
      • This will be removed later it not used
    • Improved readability by using .homogeneous and .hnormalized
    • Edit buttons half width
    • Rigid body section to control the velocity of each body
    • State method to update the displacements and other fields from the rigid bodies
    opened by zfergus 0
  • Add menu to procedurally generate a chain of n links

    Add menu to procedurally generate a chain of n links

    The menu loads the one-link fixture file and duplicates the link n times. Each link has a scaled displacement, so all links have at least one contact.

    opened by zfergus 0
  • Unknown CMake command

    Unknown CMake command "rigid_ipc_download_project"

    Hi, I git clone the rigid-ipc, and use python build.py to compile the project.

    It gives this error: CMake Error at python/CMakeLists.txt:6 (rigid_ipc_download_project): Unknown CMake command "rigid_ipc_download_project". Call Stack (most recent call first): python/CMakeLists.txt:13 (rigid_ipc_download_pybind11)

    my cmake version is 3.16.3 os: ubuntu 20.04 python: miniconda with python 3.7

    BTW, I also tried with:

    mkdir build
    cd build
    cmake -DCMAKE_BUILD_TYPE=Release ..
    make
    

    This can make with no mistakes.

    I think something wrong with the python part? Any suggestions? Thanks!

    opened by WenqiangX 0
Releases(s2021)
Owner
Incremental Potential Contact code and related projects.
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
PECOS - Prediction for Enormous and Correlated Spaces

PECOS - Predictions for Enormous and Correlated Output Spaces PECOS is a versatile and modular machine learning (ML) framework for fast learning and i

Amazon 387 Jan 04, 2023
An Efficient Training Approach for Very Large Scale Face Recognition or F²C for simplicity.

Fast Face Classification (F²C) This is the code of our paper An Efficient Training Approach for Very Large Scale Face Recognition or F²C for simplicit

33 Jun 27, 2021
ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning. In ICCV, 2021.

ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning This repository contains the code for our ICCV 202

sangho.lee 28 Nov 08, 2022
(ICCV 2021) Official code of "Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing."

Dressing in Order (DiOr) 👚 [Paper] 👖 [Webpage] 👗 [Running this code] The official implementation of "Dressing in Order: Recurrent Person Image Gene

Aiyu Cui 277 Dec 28, 2022
Pixel-Perfect Structure-from-Motion with Featuremetric Refinement (ICCV 2021, Oral)

Pixel-Perfect Structure-from-Motion (ICCV 2021 Oral) We introduce a framework that improves the accuracy of Structure-from-Motion by refining keypoint

Computer Vision and Geometry Lab 831 Dec 29, 2022
Python implementation of Lightning-rod Agent, the Stack4Things board-side probe

Iotronic Lightning-rod Agent Python implementation of Lightning-rod Agent, the Stack4Things board-side probe. Free software: Apache 2.0 license Websit

2 May 19, 2022
Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

ML² AT CILVR 18 Nov 18, 2022
Repository for "Exploring Sparsity in Image Super-Resolution for Efficient Inference", CVPR 2021

SMSR Reposity for "Exploring Sparsity in Image Super-Resolution for Efficient Inference" [arXiv] Highlights Locate and skip redundant computation in S

Longguang Wang 225 Dec 26, 2022
Autonomous Movement from Simultaneous Localization and Mapping

Autonomous Movement from Simultaneous Localization and Mapping About us Built by a group of Clarkson University students with the help from Professor

14 Nov 07, 2022
Code for Mesh Convolution Using a Learned Kernel Basis

Mesh Convolution This repository contains the implementation (in PyTorch) of the paper FULLY CONVOLUTIONAL MESH AUTOENCODER USING EFFICIENT SPATIALLY

Yi_Zhou 35 Jan 03, 2023
Official repository of the paper 'Essentials for Class Incremental Learning'

Essentials for Class Incremental Learning Official repository of the paper 'Essentials for Class Incremental Learning' This Pytorch repository contain

33 Nov 27, 2022
Improving Calibration for Long-Tailed Recognition (CVPR2021)

MiSLAS Improving Calibration for Long-Tailed Recognition Authors: Zhisheng Zhong, Jiequan Cui, Shu Liu, Jiaya Jia [arXiv] [slide] [BibTeX] Introductio

DV Lab 116 Dec 20, 2022
Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Ibai Gorordo 99 Dec 31, 2022
Canonical Appearance Transformations

CAT-Net: Learning Canonical Appearance Transformations Code to accompany our paper "How to Train a CAT: Learning Canonical Appearance Transformations

STARS Laboratory 54 Dec 24, 2022
Per-Pixel Classification is Not All You Need for Semantic Segmentation

MaskFormer: Per-Pixel Classification is Not All You Need for Semantic Segmentation Bowen Cheng, Alexander G. Schwing, Alexander Kirillov [arXiv] [Proj

Facebook Research 1k Jan 08, 2023
This is the code of paper ``Contrastive Coding for Active Learning under Class Distribution Mismatch'' with python.

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

21 Dec 22, 2022
Compute FID scores with PyTorch.

FID score for PyTorch This is a port of the official implementation of Fréchet Inception Distance to PyTorch. See https://github.com/bioinf-jku/TTUR f

2.1k Jan 06, 2023
Automatic packaging of the open-composite libs for OvGME

OvGME Packager for OpenXR – OpenComposite for DCS Note This repository is currently unsupported and needs to be migrated to the upstream OpenComposite

12 Nov 03, 2022
Generate pixel-style avatars with python.

face2pixel Generate pixel-style avatars with python. Run: Clone the project: git clone https://github.com/theodorecooper/face2pixel install requiremen

Theodore Cooper 2 May 11, 2022