This is the open-source reference implementation of the SIGGRAPH 2021 paper Intersection-free Rigid Body Dynamics.

Overview

Rigid IPC

Build License

Robust, intersection-free, simulations of rigid bodies.

This is the open-source reference implementation of the SIGGRAPH 2021 paper Intersection-free Rigid Body Dynamics.

Files

  • src/: source code
  • cmake/ and CMakeLists.txt: CMake files
  • fixtures/: input scripts to rerun all examples in our paper
  • meshes/: input meshes used by the fixtures
  • tests/: unit-tests
  • tools/: Python and Bash scripts for generating and processing results
  • comparisons/: files used in comparisons with other rigid body simulators
  • python/: Python binding files
  • notebooks/: Jupyter notebooks

Build

To build the project, use the following commands from the root directory of the project:

mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
make -j4

Dependencies

All dependancies are downloaded through CMake depending on the build options. The following libraries are used in this project:

  • IPC Toolkit: common IPC functions
  • Eigen: linear algebra
  • libigl: basic geometry functions, predicates, and viewer
  • TBB: parallelization
  • Tight Inclusion CCD: correct (conservative) continuous collision detection between triangle meshes in 3D
  • spdlog: logging information
  • filib: interval arithmetic
  • Niels Lohmann's JSON: parsing input JSON scenes
  • tinygltf: exporting simulation animation to GLTF format
  • finite-diff: finite difference comparisons
    • Only used by the unit tests and when RIGID_IPC_WITH_DERIVATIVE_CHECK=ON

Optional

Scenes

We take as input a single JSON file that specifies the mesh and initial conditions for each body. The fixtures directory contains example scenes.

Python Bindings

We expose some functionality of Rigid IPC through Python. This is still in development and lacks the ability to script many features available in the full simulator.

To build the Python bindings use the setup.py script:

python setup.py install
Comments
  • cmake fails on Linux Mint 19.3

    cmake fails on Linux Mint 19.3

    Here is what I typed:

    $ mkdir build
    $ cd build
    $ cmake -DCMAKE_BUILD_TYPE=Release ..
    -- GCC >= 4.9 detected, enabling colored diagnostics
    -- Third-party: creating target 'Eigen3::Eigen'
    -- Third-party: creating target 'igl::core'
    -- Creating target: igl::core (igl)
    -- Creating target: igl::opengl (igl_opengl)
    -- Creating target: igl::opengl_glfw (igl_opengl_glfw)
    -- Using X11 for window creation
    -- Creating target: igl::opengl_glfw_imgui (igl_opengl_glfw_imgui)
    -- Creating target: igl::png (igl_png)
    -- Creating target: igl::predicates (igl_predicates)
    -- Third-party: creating target 'nlohmann::json'
    -- Third-party: creating target 'spdlog::spdlog'
    -- Build spdlog: 1.9.0
    -- Build type: Release
    -- Generating install
    -- Third-party: creating target 'finitediff::finitediff'
    -- Third-party: creating targets 'Boost::boost'
    -- Fetching Boost
    -- Fetching Boost - done
    -- Boost found: 1.71.0 /home/glenn/src/github.com/ipc-sim/rigid-ipc/build/_deps/boost-src
    -- Found the following ICU libraries:
    --   uc (required)
    --   dt (required)
    --   i18n (required)
    -- Third-party: creating target 'TBB::tbb'
    -- Third-party: creating target 'tight_inclusion::tight_inclusion'
    -- Tight-Inclusion CCD bottom-level project
    -- GCC >= 4.9 detected, enabling colored diagnostics
    -- Searching for AVX...
    -- Using CPU native flags for AVX optimization:  -march=native
    --   Found AVX 2.0 extensions, using flags:  -march=native -mavx2 -mno-avx512f -mno-avx512pf -mno-avx512er -mno-avx512cd
    -- Using Double Precision Floating Points
    -- Third-party: creating target 'PolyFEM::polysolve'
    [ 11%] Performing download step (git clone) for 'polysolve-populate'
    Cloning into 'polysolve-src'...
    fatal: reference is not a tree: a94e9b8ed8302d4b479533c67419f31addb1e987
    CMake Error at polysolve-subbuild/polysolve-populate-prefix/tmp/polysolve-populate-gitclone.cmake:40 (message):
      Failed to checkout tag: 'a94e9b8ed8302d4b479533c67419f31addb1e987'
    
    
    CMakeFiles/polysolve-populate.dir/build.make:110: recipe for target 'polysolve-populate-prefix/src/polysolve-populate-stamp/polysolve-populate-download' failed
    make[2]: *** [polysolve-populate-prefix/src/polysolve-populate-stamp/polysolve-populate-download] Error 1
    CMakeFiles/Makefile2:94: recipe for target 'CMakeFiles/polysolve-populate.dir/all' failed
    make[1]: *** [CMakeFiles/polysolve-populate.dir/all] Error 2
    Makefile:102: recipe for target 'all' failed
    make: *** [all] Error 2
    
    CMake Error at /usr/local/cmake-3.18.2-Linux-x86_64/share/cmake-3.18/Modules/FetchContent.cmake:987 (message):
      Build step for polysolve failed: 2
    Call Stack (most recent call first):
      /usr/local/cmake-3.18.2-Linux-x86_64/share/cmake-3.18/Modules/FetchContent.cmake:1082:EVAL:2 (__FetchContent_directPopulate)
      /usr/local/cmake-3.18.2-Linux-x86_64/share/cmake-3.18/Modules/FetchContent.cmake:1082 (cmake_language)
      /usr/local/cmake-3.18.2-Linux-x86_64/share/cmake-3.18/Modules/FetchContent.cmake:1125 (FetchContent_Populate)
      cmake/recipes/polysolve.cmake:14 (FetchContent_MakeAvailable)
      CMakeLists.txt:225 (include)
    
    
    -- Configuring incomplete, errors occurred!
    See also "/home/glenn/src/github.com/ipc-sim/rigid-ipc/build/CMakeFiles/CMakeOutput.log".
    See also "/home/glenn/src/github.com/ipc-sim/rigid-ipc/build/CMakeFiles/CMakeError.log".
    

    Any ideas how to fix this? It looks like a bad git reference in polysolve-src, possibly.

    Thank you!

    opened by gmlewis 6
  • Missing files or invalid fixture scripts?

    Missing files or invalid fixture scripts?

    I tried some of the examples in the "fixtures" directory, and the simulator works great! Nice work!

    However, I discovered that there are some examples that don't run either because their mesh files don't exist in the repo or because of some other problem.

    For example, this example is missing its meshes: https://github.com/ipc-sim/rigid-ipc/blob/main/fixtures/3D/mechanisms/expanding-lock-box.json#L11-L57

    This example says [2021-09-30 19:57:28.039] [error] Invalid Json file: https://github.com/ipc-sim/rigid-ipc/blob/main/fixtures/2D/compactor.json

    opened by gmlewis 3
  • Added TimeStepping (WIP)

    Added TimeStepping (WIP)

    Updated clang-format so long chains of parameters are shown one on each line (don't hate me)

    IO

    • Added rigid-body fixtures (NEW FORMAT!)
      • Added rigid-body reader
    • Added json/eigen helper to read/write matrices

    OPT

    • Added is_barrier method (and get/set epsilon) to CollisionConstraint so we don't need to pass the BarrierConstraint to the solver
      • Updated barrier constraint to use them
    • Added accessors on OptimizationProblem for barrier case
      • updated ad-hoc problem too since it was used on unit-tests

    PHYSICS

    • updated RigidBody class to

      • include theta: position is now length 3 (x, y, theta)
      • compute mass and moment of intertia (needed for forces)
      • added position of previous step
      • added differentiable world vertices, and flag to obtain the vertices of the current or previous step.
      • TODO: remove world_displacements, we should use world_vertices instead!
    • Added RigidBodyAssembler (to replace RigidBodyAssembler once finished)

      • init method only computes inmmutable information
      • other methods compute assembly on call

    SIMULATION

    • Added new main file for simulation
    • Added UISimSate and UIMenu for the simulation UI
    • TODO: merge with collision-debugging UI or add export of single problematic step
    opened by panchagil 1
  • Newton fix

    Newton fix

    I updated the Newton solver to fail to gradient descent if the line search fails. This helps the optimization make progress even when the Hessian is ill-conditioned. The next step after this pull request is merged is to add a quasi-Newton solver (e.g. BFGS).

    • Exposed initialization of barrier epsilon in the UI.
    • Separated line search into its own file.
    • Newton method now fails to gradient descent.
    opened by zfergus 1
  • Chain rule refactor

    Chain rule refactor

    Refactor structure of project. Now we have only 4 problems

    • Rigid Body Physics + Distance Barrier Constraint + Barrier Solver

    • Particles Physics + Distance Barrier Constraint + Barrier Solver

    • Rigid Body Physics + Volume Constraint + NCP Solver

    • Particles Physics + Volume Constraint + NCP Solver

    • Remove some base classes that were forcing us to write more functions than neccesary

      • Base OptimizationProblem is gone, now we have some interfaces for the different problems
      • Base CollisionConstraint remainds but implements few methods.
    • Removed exmplicit template instantiation and instead created .tpp files to keep template implementations

    opened by panchagil 0
  • Combined the distance barrier and CCD broad-phases

    Combined the distance barrier and CCD broad-phases

    • Exposed broad-phase in order to get the candidate collisions
    • Modified DistanceBarrier::detectCollisions to first build a common collision candidate set
    • Using this set run the narrow-phase of both the barrier and the CCD
    • TODO: Expose the ev_candidates as a member variable.
    • TODO: Add a is_collision_candidates_frozen flag to cause detectCollisions to not run the broad-phase again.
    opened by zfergus 0
  • Added BFGS and gradient descent solvers

    Added BFGS and gradient descent solvers

    • Added BFGS and GD to barrier solver as inner solvers
    • Needed to move some functionality out of NewtonSolver and into OptimizationSolvers
    • TODO: Move free_dof out of the OptimizationSolver and into the optimization problem with the eval_* functions using free_dof to remove elements.
    opened by zfergus 0
  • Added Rigid Body System Derivatives and  Rigid Body Problem

    Added Rigid Body System Derivatives and Rigid Body Problem

    • Added python notebook to get exact derivatives of RB transformation
    • Moved rigid body to its own file (out of rigid_body_system)
      • Added tests for RB gradient/hessian comparing with exact solutions
    • Added assembly of gradient and hessian on RB-System
      • Added test for RB-System comparing with exact solutions

    Added Rigid Body Problem

    • Added Rigid Body Problem to opt/
    • Implemented Functional, its gradient and hessian
      • tested against finite differences
    • Added tensor util to compute the multiplication of (1x2N) * (2N x 3B x 3B) used by the chain rule.
    opened by panchagil 0
  • Rigid body system

    Rigid body system

    • Moved rigid bodies to physics/ folder
      • added RigidBodySystem that keeps list of RB.
    • Moved solvers to solvers/ folder
    • Removed (a lot of)unused code
    opened by panchagil 0
  • Rigid bodies

    Rigid bodies

    Add UI features for controlling rigid bodies individually

    • Added gradient and hessian of compute_particle_displacements
      • This will be removed later it not used
    • Improved readability by using .homogeneous and .hnormalized
    • Edit buttons half width
    • Rigid body section to control the velocity of each body
    • State method to update the displacements and other fields from the rigid bodies
    opened by zfergus 0
  • Add menu to procedurally generate a chain of n links

    Add menu to procedurally generate a chain of n links

    The menu loads the one-link fixture file and duplicates the link n times. Each link has a scaled displacement, so all links have at least one contact.

    opened by zfergus 0
  • Unknown CMake command

    Unknown CMake command "rigid_ipc_download_project"

    Hi, I git clone the rigid-ipc, and use python build.py to compile the project.

    It gives this error: CMake Error at python/CMakeLists.txt:6 (rigid_ipc_download_project): Unknown CMake command "rigid_ipc_download_project". Call Stack (most recent call first): python/CMakeLists.txt:13 (rigid_ipc_download_pybind11)

    my cmake version is 3.16.3 os: ubuntu 20.04 python: miniconda with python 3.7

    BTW, I also tried with:

    mkdir build
    cd build
    cmake -DCMAKE_BUILD_TYPE=Release ..
    make
    

    This can make with no mistakes.

    I think something wrong with the python part? Any suggestions? Thanks!

    opened by WenqiangX 0
Releases(s2021)
Owner
Incremental Potential Contact code and related projects.
A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform

FedML-AI 175 Dec 01, 2022
OneFlow is a performance-centered and open-source deep learning framework.

OneFlow OneFlow is a performance-centered and open-source deep learning framework. Latest News Version 0.5.0 is out! First class support for eager exe

OneFlow 4.2k Jan 07, 2023
Self Driving RC Car Code

Derp Learning Derp Learning is a Python package that collects data, trains models, and then controls an RC car for track racing. Hardware You will nee

Not Karol 39 Dec 07, 2022
Planning from Pixels in Environments with Combinatorially Hard Search Spaces -- NeurIPS 2021

PPGS: Planning from Pixels in Environments with Combinatorially Hard Search Spaces Environment Setup We recommend pipenv for creating and managing vir

Autonomous Learning Group 11 Jun 26, 2022
LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs

LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs This is the code for the LERP. Dataset The dataset used is MI

5 Jun 18, 2022
《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)

A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science

Artёm Komarichev 44 Feb 24, 2022
Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER (WIP) Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEER is an e

Alipay 6 Dec 17, 2022
TorchX: A PyTorch Extension Library for More Efficient Deep Learning

TorchX TorchX: A PyTorch Extension Library for More Efficient Deep Learning. @misc{torchx, author = {Ansheng You and Changxu Wang}, title = {T

Donny You 8 May 28, 2022
Gesture recognition on Event Data

Event based Gesture Recognition Gesture recognition on Event Data usually involv

2 Feb 14, 2022
A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)

Library | Paper | Slack We released two versions of OAG-BERT in CogDL package. OAG-BERT is a heterogeneous entity-augmented academic language model wh

THUDM 58 Dec 17, 2022
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pytorch Lightning 1.4k Jan 01, 2023
An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym

gym-idsgame An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym gym-idsgame is a reinforcement learning environment for simulating at

Kim Hammar 29 Dec 03, 2022
Official code for "InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization" (ICLR 2020, spotlight)

InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization Authors: Fan-yun Sun, Jordan Hoffm

Fan-Yun Sun 232 Dec 28, 2022
Code for ACL'2021 paper WARP 🌀 Word-level Adversarial ReProgramming

Code for ACL'2021 paper WARP 🌀 Word-level Adversarial ReProgramming. Outperforming `GPT-3` on SuperGLUE Few-Shot text classification.

YerevaNN 75 Nov 06, 2022
Bayesian optimisation library developped by Huawei Noah's Ark Library

Bayesian Optimisation Research This directory contains official implementations for Bayesian optimisation works developped by Huawei R&D, Noah's Ark L

HUAWEI Noah's Ark Lab 395 Dec 30, 2022
Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System

Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System This repository contains code for the paper Schultheis,

2 Oct 28, 2022
😊 Python module for face feature changing

PyWarping Python module for face feature changing Installation pip install pywarping If you get an error: No such file or directory: 'cmake': 'cmake',

Dopevog 10 Sep 10, 2021
Supporting code for "Autoregressive neural-network wavefunctions for ab initio quantum chemistry".

naqs-for-quantum-chemistry This repository contains the codebase developed for the paper Autoregressive neural-network wavefunctions for ab initio qua

Tom Barrett 24 Dec 23, 2022
Negative Sample is Negative in Its Own Way: Tailoring Negative Sentences forImage-Text Retrieval

NSGDC Some codes in this repo are copied/modified from opensource implementations made available by UNITER, PyTorch, HuggingFace, OpenNMT, and Nvidia.

Zhihao Fan 2 Nov 07, 2022
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet

Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet, CVPR2021 安全AI挑战者计划第六期:ImageNet无限制对抗攻击 决赛第四名(team name: Advers)

51 Dec 01, 2022