Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations.

Related tags

Machine LearningBO_GP
Overview

BO-GP

Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations.

The BO-GP codes are developed using GPy and GPyOpt. The optimizer is non-intrusive and can be linked to any CFD solver.

Reference:

Y. Morita, S. Rezaeiravesh, N. Tabatabaeia, R. Vinuesaa, K. Fukagata, P. Schlatter, Applying Bayesian Optimization with Gaussian Process Regression to Computational Fluid Dynamics Problems, Journal of Computational Physics, 2021.

Exmaple: Turbulent boundary layer (TBL) with non-zero pressure gradient.

See Section 5 in the above reference. The flow is simulated using OpenFOAM.

Questions/Remarks:

Questions can be forwarded to [email protected], [email protected], and [email protected].

List of included files and folders:

  • driver_BOGP.py: main driver for running the example, i.e. BO-GP of pessure-gradient TBL simulated by OpenFOAM.

  • gpOptim/: Bayesian optimization codes based on Gaussian processes, using GPy and GPyOpt.

    • workDir/
      • gpList.dat
    • gpOpt.py
  • OFcase/: OpenFOAM case folder

    • system/
      • yTopParams.in (written in main_pre.py, used by blockMeshDict & controlDict).
      • blockMeshDict
      • controlDict
      • decomposeParDict
      • fvSchemes
      • fvSolution
    • 0/
      • U,p,k,omega,nut
      • *_IC files (use inflow.py to make these files).
    • constant/
      • polyMesh/ (not included)
      • transportProperties
    • jobscript
    • OFrun.sh
  • OFpost/: Post-processing the results of OFcase.

    • main_post.py
  • OFpre/: Pre-processing the OFcase

    • main_pre.py: creating yTopParams.in using the latest parameter sample.
    • inflow/inflow_gen.py: Creating inflow conditions for RANS of TBL with pressure gradient using DNS data for the TBL with zero-pressure gradient.
  • figs/: To save figures produced when running the optimization.

    • make_movie.sh: make movie in png/ from pdf files.
  • data/: Created when running the BO-GP.

  • storage/: Created when running the BO-GP.

Settings & inputs (to run the example):

  • In driver_BOGP_example.py: U_infty, delta99_in, Nx, Ny, Nz, t, loop params, path, beta_t etc.
  • /gpOptim/gpOpt.py: number of parameters, range of parameters, tolerance, GP kernel, xi, etc.

Requirements:

  1. python3.X
  2. numpy
  3. matplotlib
  4. GPy
  5. GpyOpt
  6. OpenFOAM v.7 (or v.6)
  7. bl_data/ in OFpre/inflow/ (DNS data from here)

How to test the example for different settings:

  • To change the structure of the geometry

    • create the new inflow from precursor using OFpre/inflow/inflow_gen.py (precursor results required)
    • update the blockMeshDict
    • update the driver accordingly
  • To change the number of prosessors used for the OpenFOAM simulation

    • update nProcessors in the driver
    • update decomposeParDict
    • update jobScript
  • To change the parameterization of the upper wall

    • change qBound in gpOpt.py
    • update blockMeshDict
  • To change beta_t (target pressure-gradient parameter beta)

    • change beta_t in the driver
  • When you clone this repository and get errors, please try run:

    • mkdir data
    • mkdir storage
    • mkdir OFcase/constant/polyMesh/
Owner
KTH Mechanics
KTH Mechanics
XGBoost-Ray is a distributed backend for XGBoost, built on top of distributed computing framework Ray.

XGBoost-Ray is a distributed backend for XGBoost, built on top of distributed computing framework Ray.

92 Dec 14, 2022
A toolkit for geo ML data processing and model evaluation (fork of solaris)

An open source ML toolkit for overhead imagery. This is a beta version of lunular which may continue to develop. Please report any bugs through issues

Ryan Avery 4 Nov 04, 2021
A python library for easy manipulation and forecasting of time series.

Time Series Made Easy in Python darts is a python library for easy manipulation and forecasting of time series. It contains a variety of models, from

Unit8 5.2k Jan 04, 2023
An open source framework that provides a simple, universal API for building distributed applications. Ray is packaged with RLlib, a scalable reinforcement learning library, and Tune, a scalable hyperparameter tuning library.

Ray provides a simple, universal API for building distributed applications. Ray is packaged with the following libraries for accelerating machine lear

23.3k Dec 31, 2022
MLBox is a powerful Automated Machine Learning python library.

MLBox is a powerful Automated Machine Learning python library. It provides the following features: Fast reading and distributed data preprocessing/cle

Axel 1.4k Jan 06, 2023
Covid-polygraph - a set of Machine Learning-driven fact-checking tools

Covid-polygraph, a set of Machine Learning-driven fact-checking tools that aim to address the issue of misleading information related to COVID-19.

1 Apr 22, 2022
Apple-voice-recognition - Machine Learning

Apple-voice-recognition Machine Learning How does Siri work? Siri is based on large-scale Machine Learning systems that employ many aspects of data sc

Harshith VH 1 Oct 22, 2021
Climin is a Python package for optimization, heavily biased to machine learning scenarios

climin climin is a Python package for optimization, heavily biased to machine learning scenarios distributed under the BSD 3-clause license. It works

Biomimetic Robotics and Machine Learning at Technische Universität München 177 Sep 02, 2022
scikit-fem is a lightweight Python 3.7+ library for performing finite element assembly.

scikit-fem is a lightweight Python 3.7+ library for performing finite element assembly. Its main purpose is the transformation of bilinear forms into sparse matrices and linear forms into vectors.

Tom Gustafsson 297 Dec 13, 2022
Arquivos do curso online sobre a estatística voltada para ciência de dados e aprendizado de máquina.

Estatistica para Ciência de Dados e Machine Learning Arquivos do curso online sobre a estatística voltada para ciência de dados e aprendizado de máqui

Renan Barbosa 1 Jan 10, 2022
Avocado hass time series vs predict price

AVOCADO HASS TIME SERIES VÀ PREDICT PRICE Trước khi vào Heroku muốn giao diện đẹp mọi người chuyển giúp mình theo hình bên dưới https://avocado-hass.h

hieulmsc 3 Dec 18, 2021
This machine-learning algorithm takes in data from the last 60 days and tries to predict tomorrow's price of any crypto you ask it.

Crypto-Currency-Predictor This machine-learning algorithm takes in data from the last 60 days and tries to predict tomorrow's price of any crypto you

Hazim Arafa 6 Dec 04, 2022
ClearML - Auto-Magical Suite of tools to streamline your ML workflow. Experiment Manager, MLOps and Data-Management

ClearML - Auto-Magical Suite of tools to streamline your ML workflow Experiment Manager, MLOps and Data-Management ClearML Formerly known as Allegro T

ClearML 4k Jan 09, 2023
GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms

Generator of Rad Names from Decent Paper Acronyms

264 Nov 08, 2022
MLFlow in a Dockercontainer based on Azurite and Postgres

mlflow-azurite-postgres docker This is a MLFLow image which works with a postgres DB and a local Azure Blob Storage Instance (Azurite). This image is

2 May 29, 2022
使用数学和计算机知识投机倒把

偷鸡不成项目集锦 坦率地讲,涉及金融市场的好策略如果公开,必然导致使用的人多,最后策略变差。所以这个仓库只收集我目前失败了的案例。 加密货币组合套利 中国体育彩票预测 我赚不上钱的项目,也许可以帮助更有能力的人去赚钱。

Roy 28 Dec 29, 2022
Predict the output which should give a fair idea about the chances of admission for a student for a particular university

Predict the output which should give a fair idea about the chances of admission for a student for a particular university.

ArvindSandhu 1 Jan 11, 2022
Apache Liminal is an end-to-end platform for data engineers & scientists, allowing them to build, train and deploy machine learning models in a robust and agile way

Apache Liminals goal is to operationalise the machine learning process, allowing data scientists to quickly transition from a successful experiment to an automated pipeline of model training, validat

The Apache Software Foundation 121 Dec 28, 2022
Extreme Learning Machine implementation in Python

Python-ELM v0.3 --- ARCHIVED March 2021 --- This is an implementation of the Extreme Learning Machine [1][2] in Python, based on scikit-learn. From

David C. Lambert 511 Dec 20, 2022
Applied Machine Learning for Graduate Program in Computer Science (PPGCC)

Applied Machine Learning for Graduate Program in Computer Science (PPGCC) - Federal University of Santa Catarina

Jônatas Negri Grandini 1 Dec 22, 2021