Price Prediction model is used to develop an LSTM model to predict the future market price of Bitcoin and Ethereum.

Overview

Price-Prediction-Model

This project’s goal is to develop a machine learning model that can predict a cryptocurrency's future market price.

A LSTM model is trained on historical price data that is pulled in through an API and stored in a relational database.

The model attempts to predict prices for a chosen time window, for both Bitcoin and Ethereum.

Our app is deployed using Heroku:

https://price-prediction-model.herokuapp.com/

Dataset:

The daily crypto price data has been pulled in through an API on CryptoCompare:

https://min-api.cryptocompare.com/documentation?key=Historical&cat=dataHistoday

The pricing information includes: timestamp, high, low, open, volumefrom, volumeto, and close. We will most likely save all the data, but only use one of the pricing metrics to train the model.

ETL proccess

The API data includes timestamp, high, low, open, volumefrom, volumeto, and close. In addition to these columns, we've created a coin, date, and year column.

Data storage

  • We used Heroku Postgres to store data for our app.
  • The database updates only when needed, based on the current and last unix timestamp in the db Database updates up to once daily, when index page loads, based on 00:00 GMT time zone.
  • Time units were daily only.
  • Data for both coins was stored in 1 table, due to limitations of a free Heroku Postgres database.

Long Short Term Memory (LSTM) Model

The Long Short Term Model (LSTM) has been used to do the price forecasting. LSTM is a slightly more sophisticated version of a Recurrent Neural Network (RNN) which incorporates long term memory. The model will be trained on historical price data and used to predict the next value in the series. (Time window for predictions, tbd)

Visualization

HTML/CSS/Plotly has been used to do the visualization and plots. Here are the final plots and Welcome page:

Welcome Page:

Bitcoin PricePerformance Plot and Table:


Bitcoin Candlestick chart:

Bitcoin Price Prediction Model:

Bitcoin Price Acceleration Plot:

Ethereum Price Performance Plot and Table:

Ethereum Candlestick Plot:

Bitcoin vs Ethereum Comparison Table and Plot:


Team Members:

Anna Weeks
Hima Vissa
Jacob Trevithick
Lekshmi Prabha
Esse é o meu primeiro repo tratando de fim a fim, uma pipeline de dados abertos do governo brasileiro relacionado a compras de contrato e cronogramas anuais com spark, em pyspark e SQL!

Olá! Esse é o meu primeiro repo tratando de fim a fim, uma pipeline de dados abertos do governo brasileiro relacionado a compras de contrato e cronogr

Henrique de Paula 10 Apr 04, 2022
dirty_cat is a Python module for machine-learning on dirty categorical variables.

dirty_cat dirty_cat is a Python module for machine-learning on dirty categorical variables.

637 Dec 29, 2022
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)

Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour

Benedek Rozemberczki 619 Dec 14, 2022
Multiple Linear Regression using the LinearRegression class from sklearn.linear_model library

Multiple-Linear-Regression-master - A python program to implement Multiple Linear Regression using the LinearRegression class from sklearn.linear model library

Kushal Shingote 1 Feb 06, 2022
Forecast dynamically at scale with this unique package. pip install scalecast

🌄 Scalecast: Dynamic Forecasting at Scale About This package uses a scaleable forecasting approach in Python with common scikit-learn and statsmodels

Michael Keith 158 Jan 03, 2023
Magenta: Music and Art Generation with Machine Intelligence

Magenta is a research project exploring the role of machine learning in the process of creating art and music. Primarily this involves developing new

Magenta 18.1k Dec 30, 2022
Simulate & classify transient absorption spectroscopy (TAS) spectral features for bulk semiconducting materials (Post-DFT)

PyTASER PyTASER is a Python (3.9+) library and set of command-line tools for classifying spectral features in bulk materials, post-DFT. The goal of th

Materials Design Group 4 Dec 27, 2022
A collection of video resources for machine learning

Machine Learning Videos This is a collection of recorded talks at machine learning conferences, workshops, seminars, summer schools, and miscellaneous

Dustin Tran 1.5k Dec 29, 2022
Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.

Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics

Facebook Research 4.1k Dec 29, 2022
Python Automated Machine Learning library for tabular data.

Simple but powerful Automated Machine Learning library for tabular data. It uses efficient in-memory SAP HANA algorithms to automate routine Data Scie

Daniel Khromov 47 Dec 17, 2022
A Python implementation of FastDTW

fastdtw Python implementation of FastDTW [1], which is an approximate Dynamic Time Warping (DTW) algorithm that provides optimal or near-optimal align

tanitter 651 Jan 04, 2023
A naive Bayes model for cancer classification using a set of documents

Naivebayes text classifcation model for cancer and noncancer documents Author: Alex King Purpose Requirements/files included How to use 1. Purpose The

Alex W King 1 Nov 24, 2021
MasTrade is a trading bot in baselines3,pytorch,gym

mastrade MasTrade is a trading bot in baselines3,pytorch,gym idea we have for example 1 btc and we buy a crypto with it with market option to trade in

Masoud Azizi 18 May 24, 2022
Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag

Zalando Research 120 Dec 24, 2022
Open source time series library for Python

PyFlux PyFlux is an open source time series library for Python. The library has a good array of modern time series models, as well as a flexible array

Ross Taylor 2k Jan 02, 2023
Learn how to responsibly deliver value with ML.

Made With ML Applied ML · MLOps · Production Join 30K+ developers in learning how to responsibly deliver value with ML. 🔥 Among the top MLOps reposit

Goku Mohandas 32k Dec 30, 2022
Predicting job salaries from ads - a Kaggle competition

Predicting job salaries from ads - a Kaggle competition

Zygmunt Zając 57 Oct 23, 2020
pandas, scikit-learn, xgboost and seaborn integration

pandas, scikit-learn and xgboost integration.

299 Dec 30, 2022
jaxfg - Factor graph-based nonlinear optimization library for JAX.

Factor graphs + nonlinear optimization in JAX

Brent Yi 134 Dec 21, 2022
MCML is a toolkit for semi-supervised dimensionality reduction and quantitative analysis of Multi-Class, Multi-Label data

MCML is a toolkit for semi-supervised dimensionality reduction and quantitative analysis of Multi-Class, Multi-Label data. We demonstrate its use

Pachter Lab 26 Nov 29, 2022