Price Prediction model is used to develop an LSTM model to predict the future market price of Bitcoin and Ethereum.

Overview

Price-Prediction-Model

This project’s goal is to develop a machine learning model that can predict a cryptocurrency's future market price.

A LSTM model is trained on historical price data that is pulled in through an API and stored in a relational database.

The model attempts to predict prices for a chosen time window, for both Bitcoin and Ethereum.

Our app is deployed using Heroku:

https://price-prediction-model.herokuapp.com/

Dataset:

The daily crypto price data has been pulled in through an API on CryptoCompare:

https://min-api.cryptocompare.com/documentation?key=Historical&cat=dataHistoday

The pricing information includes: timestamp, high, low, open, volumefrom, volumeto, and close. We will most likely save all the data, but only use one of the pricing metrics to train the model.

ETL proccess

The API data includes timestamp, high, low, open, volumefrom, volumeto, and close. In addition to these columns, we've created a coin, date, and year column.

Data storage

  • We used Heroku Postgres to store data for our app.
  • The database updates only when needed, based on the current and last unix timestamp in the db Database updates up to once daily, when index page loads, based on 00:00 GMT time zone.
  • Time units were daily only.
  • Data for both coins was stored in 1 table, due to limitations of a free Heroku Postgres database.

Long Short Term Memory (LSTM) Model

The Long Short Term Model (LSTM) has been used to do the price forecasting. LSTM is a slightly more sophisticated version of a Recurrent Neural Network (RNN) which incorporates long term memory. The model will be trained on historical price data and used to predict the next value in the series. (Time window for predictions, tbd)

Visualization

HTML/CSS/Plotly has been used to do the visualization and plots. Here are the final plots and Welcome page:

Welcome Page:

Bitcoin PricePerformance Plot and Table:


Bitcoin Candlestick chart:

Bitcoin Price Prediction Model:

Bitcoin Price Acceleration Plot:

Ethereum Price Performance Plot and Table:

Ethereum Candlestick Plot:

Bitcoin vs Ethereum Comparison Table and Plot:


Team Members:

Anna Weeks
Hima Vissa
Jacob Trevithick
Lekshmi Prabha
Machine-care - A simple python script to take care of simple maintenance tasks

Machine care An simple python script to take care of simple maintenance tasks fo

2 Jul 10, 2022
A benchmark of data-centric tasks from across the machine learning lifecycle.

A benchmark of data-centric tasks from across the machine learning lifecycle.

61 Dec 28, 2022
SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker.

SageMaker Python SDK SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker. With the S

Amazon Web Services 1.8k Jan 01, 2023
Laporan Proyek Machine Learning - Azhar Rizki Zulma

Laporan Proyek Machine Learning - Azhar Rizki Zulma Project Overview Domain proyek yang dipilih dalam proyek machine learning ini adalah mengenai hibu

Azhar Rizki Zulma 6 Mar 12, 2022
A Python library for detecting patterns and anomalies in massive datasets using the Matrix Profile

matrixprofile-ts matrixprofile-ts is a Python 2 and 3 library for evaluating time series data using the Matrix Profile algorithms developed by the Keo

Target 696 Dec 26, 2022
MLR - Machine Learning Research

Machine Learning Research 1. Project Topic 1.1. Exsiting research Benmark: https://paperswithcode.com/sota ACL anthology for NLP papers: http://www.ac

Charles 69 Oct 20, 2022
A classification model capable of accurately predicting the price of secondhand cars

The purpose of this project is create a classification model capable of accurately predicting the price of secondhand cars. The data used for model building is open source and has been added to this

Akarsh Singh 2 Sep 13, 2022
Classification based on Fuzzy Logic(C-Means).

CMeans_fuzzy Classification based on Fuzzy Logic(C-Means). Table of Contents About The Project Fuzzy CMeans Algorithm Built With Getting Started Insta

Armin Zolfaghari Daryani 3 Feb 08, 2022
Code Repository for Machine Learning with PyTorch and Scikit-Learn

Code Repository for Machine Learning with PyTorch and Scikit-Learn

Sebastian Raschka 1.4k Jan 03, 2023
A python fast implementation of the famous SVD algorithm popularized by Simon Funk during Netflix Prize

⚡ funk-svd funk-svd is a Python 3 library implementing a fast version of the famous SVD algorithm popularized by Simon Funk during the Neflix Prize co

Geoffrey Bolmier 171 Dec 19, 2022
A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

Allan Barcelos 8 Aug 10, 2022
UpliftML: A Python Package for Scalable Uplift Modeling

UpliftML is a Python package for scalable unconstrained and constrained uplift modeling from experimental data. To accommodate working with big data, the package uses PySpark and H2O models as base l

Booking.com 254 Dec 31, 2022
Estudos e projetos feitos com PySpark.

PySpark (Spark com Python) PySpark é uma biblioteca Spark escrita em Python, e seu objetivo é permitir a análise interativa dos dados em um ambiente d

Karinne Cristina 54 Nov 06, 2022
A simple application that calculates the probability distribution of a normal distribution

probability-density-function General info An application that calculates the probability density and cumulative distribution of a normal distribution

1 Oct 25, 2022
Time-series momentum for momentum investing strategy

Time-series-momentum Time-series momentum strategy. You can use the data_analysis.py file to find out the best trigger and window for a given asset an

Victor Caldeira 3 Jun 18, 2022
Tools for diffing and merging of Jupyter notebooks.

nbdime provides tools for diffing and merging of Jupyter Notebooks.

Project Jupyter 2.3k Jan 03, 2023
Dragonfly is an open source python library for scalable Bayesian optimisation.

Dragonfly is an open source python library for scalable Bayesian optimisation. Bayesian optimisation is used for optimising black-box functions whose

744 Jan 02, 2023
Machine learning that just works, for effortless production applications

Machine learning that just works, for effortless production applications

Elisha Yadgaran 16 Sep 02, 2022
MCML is a toolkit for semi-supervised dimensionality reduction and quantitative analysis of Multi-Class, Multi-Label data

MCML is a toolkit for semi-supervised dimensionality reduction and quantitative analysis of Multi-Class, Multi-Label data. We demonstrate its use

Pachter Lab 26 Nov 29, 2022
30 Days Of Machine Learning Using Pytorch

Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

Mayur 119 Nov 24, 2022