Domain Generalization with MixStyle, ICLR'21.

Overview

MixStyle

This repo contains the code of our ICLR'21 paper, "Domain Generalization with MixStyle".

The OpenReview link is https://openreview.net/forum?id=6xHJ37MVxxp.

########## Updates ############

12-04-2021: A variable self._activated is added to MixStyle to better control the computational flow. To deactivate MixStyle without modifying the model code, one can do

def deactivate_mixstyle(m):
    if type(m) == MixStyle:
        m.set_activation_status(False)

model.apply(deactivate_mixstyle)

Similarly, to activate MixStyle, one can do

def activate_mixstyle(m):
    if type(m) == MixStyle:
        m.set_activation_status(True)

model.apply(activate_mixstyle)

Note that MixStyle has been included in Dassl.pytorch. See the code for details.

05-03-2021: You might also be interested in our recently released survey on domain generalization at https://arxiv.org/abs/2103.02503, which summarizes the ten-year development in domain generalization, with coverage on the history, datasets, related problems, methodologies, potential directions, and so on.

##############################

A brief introduction: The key idea of MixStyle is to probablistically mix instance-level feature statistics of training samples across source domains. MixStyle improves model robustness to domain shift by implicitly synthesizing new domains at the feature level for regularizing the training of convolutional neural networks. This idea is largely inspired by neural style transfer which has shown that feature statistics are closely related to image style and therefore arbitrary image style transfer can be achieved by switching the feature statistics between a content and a style image.

MixStyle is very easy to implement. Below we show the PyTorch code of MixStyle.

import random
import torch
import torch.nn as nn


class MixStyle(nn.Module):
    """MixStyle.

    Reference:
      Zhou et al. Domain Generalization with MixStyle. ICLR 2021.
    """

    def __init__(self, p=0.5, alpha=0.1, eps=1e-6):
        """
        Args:
          p (float): probability of using MixStyle.
          alpha (float): parameter of the Beta distribution.
          eps (float): scaling parameter to avoid numerical issues.
        """
        super().__init__()
        self.p = p
        self.beta = torch.distributions.Beta(alpha, alpha)
        self.eps = eps
        self.alpha = alpha

        self._activated = True

    def __repr__(self):
        return f'MixStyle(p={self.p}, alpha={self.alpha}, eps={self.eps})'

    def set_activation_status(self, status=True):
        self._activated = status

    def forward(self, x):
        if not self.training or not self._activated:
            return x

        if random.random() > self.p:
            return x

        B = x.size(0)

        mu = x.mean(dim=[2, 3], keepdim=True)
        var = x.var(dim=[2, 3], keepdim=True)
        sig = (var + self.eps).sqrt()
        mu, sig = mu.detach(), sig.detach()
        x_normed = (x-mu) / sig

        lmda = self.beta.sample((B, 1, 1, 1))
        lmda = lmda.to(x.device)

        perm = torch.randperm(B)
        mu2, sig2 = mu[perm], sig[perm]
        mu_mix = mu*lmda + mu2 * (1-lmda)
        sig_mix = sig*lmda + sig2 * (1-lmda)

        return x_normed*sig_mix + mu_mix

How to apply MixStyle to your CNN models? Say you are using ResNet as the CNN architecture, and want to apply MixStyle after the 1st and 2nd residual blocks, you can first instantiate the MixStyle module using

self.mixstyle = MixStyle(p=0.5, alpha=0.1)

during network construction (in __init__()), and then apply MixStyle in the forward pass like

def forward(self, x):
    x = self.conv1(x) # 1st convolution layer
    x = self.res1(x) # 1st residual block
    x = self.mixstyle(x)
    x = self.res2(x) # 2nd residual block
    x = self.mixstyle(x)
    x = self.res3(x) # 3rd residual block
    x = self.res4(x) # 4th residual block
    ...

In our paper, we have demonstrated the effectiveness of MixStyle on three tasks: image classification, person re-identification, and reinforcement learning. The source code for reproducing all experiments can be found in mixstyle-release/imcls, mixstyle-release/reid, and mixstyle-release/rl, respectively.

Takeaways on applying MixStyle to your tasks:

  • Applying MixStyle to multiple lower layers is generally better
  • Do not apply MixStyle to the last layer that is the closest to the prediction layer
  • Different tasks might favor different combinations

For more analytical studies, please read our paper at https://openreview.net/forum?id=6xHJ37MVxxp.

To cite MixStyle in your publications, please use the following bibtex entry

@inproceedings{zhou2021mixstyle,
  title={Domain Generalization with MixStyle},
  author={Zhou, Kaiyang and Yang, Yongxin and Qiao, Yu and Xiang, Tao},
  booktitle={ICLR},
  year={2021}
}
Owner
Kaiyang
Researcher in computer vision and machine learning :)
Kaiyang
Loopy belief propagation for factor graphs on discrete variables, in JAX!

PGMax implements general factor graphs for discrete probabilistic graphical models (PGMs), and hardware-accelerated differentiable loopy belief propagation (LBP) in JAX.

Vicarious 62 Dec 23, 2022
Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination

Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination Pratul P. Srinivasan, Ben Mildenhall, Matthew Tancik, Jonathan T. Barron,

Pratul Srinivasan 65 Dec 14, 2022
Final project code: Implementing BicycleGAN, for CIS680 FA21 at University of Pennsylvania

680 Final Project: BicycleGAN Haoran Tang Instructions 1. Training To train the network, please run train.py. Change hyper-parameters and folder paths

Haoran Tang 0 Apr 22, 2022
🛠️ SLAMcore SLAM Utilities

slamcore_utils Description This repo contains the slamcore-setup-dataset script. It can be used for installing a sample dataset for offline testing an

SLAMcore 7 Aug 04, 2022
The official PyTorch implementation of recent paper - SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

This repository is the official PyTorch implementation of SAINT. Find the paper on arxiv SAINT: Improved Neural Networks for Tabular Data via Row Atte

Gowthami Somepalli 284 Dec 21, 2022
A lightweight face-recognition toolbox and pipeline based on tensorflow-lite

FaceIDLight 📘 Description A lightweight face-recognition toolbox and pipeline based on tensorflow-lite with MTCNN-Face-Detection and ArcFace-Face-Rec

Martin Knoche 16 Dec 07, 2022
A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform

FedML-AI 175 Dec 01, 2022
Learning Open-World Object Proposals without Learning to Classify

Learning Open-World Object Proposals without Learning to Classify Pytorch implementation for "Learning Open-World Object Proposals without Learning to

Dahun Kim 149 Dec 22, 2022
[MedIA2021]MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning

MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning [MedIA or Arxiv] and [Demo] This repository pr

Healthcare Intelligence Laboratory 92 Dec 08, 2022
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

Tom 50 Dec 16, 2022
Pytorch implementation of Learning Rate Dropout.

Learning-Rate-Dropout Pytorch implementation of Learning Rate Dropout. Paper Link: https://arxiv.org/pdf/1912.00144.pdf Train ResNet-34 for Cifar10: r

42 Nov 25, 2022
Contrastively Disentangled Sequential Variational Audoencoder

Contrastively Disentangled Sequential Variational Audoencoder (C-DSVAE) Overview This is the implementation for our C-DSVAE, a novel self-supervised d

Junwen Bai 35 Dec 24, 2022
The ICS Chat System project for NYU Shanghai Fall 2021

ICS_Chat_System [Catenger] This is the ICS Chat System project for NYU Shanghai Fall 2021 Creators: Shavarsh Melikyan, Skyler Chen and Arghya Sarkar,

1 Dec 20, 2021
Evaluation Pipeline for our ECCV2020: Journey Towards Tiny Perceptual Super-Resolution.

Journey Towards Tiny Perceptual Super-Resolution Test code for our ECCV2020 paper: https://arxiv.org/abs/2007.04356 Our x4 upscaling pre-trained model

Royson 6 Mar 30, 2022
clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation

README clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation CVPR 2021 Authors: Suprosanna Shit and Johannes C. Paetzo

110 Dec 29, 2022
Self-supervised learning optimally robust representations for domain generalization.

OptDom: Learning Optimal Representations for Domain Generalization This repository contains the official implementation for Optimal Representations fo

Yangjun Ruan 18 Aug 25, 2022
The Adapter-Bot: All-In-One Controllable Conversational Model

The Adapter-Bot: All-In-One Controllable Conversational Model This is the implementation of the paper: The Adapter-Bot: All-In-One Controllable Conver

CAiRE 37 Nov 04, 2022
Demo code for paper "Learning optical flow from still images", CVPR 2021.

Depthstillation Demo code for "Learning optical flow from still images", CVPR 2021. [Project page] - [Paper] - [Supplementary] This code is provided t

130 Dec 25, 2022
Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation

Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation This is the implementation of the approach describ

Taosha Fan 47 Nov 15, 2022