Official implementation of the paper: "LDNet: Unified Listener Dependent Modeling in MOS Prediction for Synthetic Speech"

Related tags

Deep LearningLDNet
Overview

LDNet

Author: Wen-Chin Huang (Nagoya University) Email: [email protected]

This is the official implementation of the paper "LDNet: Unified Listener Dependent Modeling in MOS Prediction for Synthetic Speech". This is a model that takes an input synthetic speech sample and outputs the simulated human rating.

Results

Usage

Currently we support only the VCC2018 dataset. We plan to release the BVCC dataset in the near future.

Requirements

  • PyTorch 1.9 (versions not too old should be fine.)
  • librosa
  • pandas
  • h5py
  • scipy
  • matplotlib
  • tqdm

Data preparation

# Download the VCC2018 dataset.
cd data
./download.sh vcc2018

Training

We provide configs that correspond to the following rows in the above figure:

  • (a): MBNet.yaml
  • (d): LDNet_MobileNetV3_RNN_5e-3.yaml
  • (e): LDNet_MobileNetV3_FFN_1e-3.yaml
  • (f): LDNet-MN_MobileNetV3_RNN_FFN_1e-3_lamb4.yaml
  • (g): LDNet-ML_MobileNetV3_FFN_1e-3.yaml
python train.py --config configs/<config_name> --tag <tag_name>

By default, the experimental results will be stored in exp/<tag_name>, including:

  • model-<steps>.pt: model checkpoints.
  • config.yml: the config file.
  • idtable.pkl: the dictionary that maps listener to ID.
  • training_<inference_mode>: the validation results generated along the training. This file is useful for model selection. Note that the inference_mode in the config file decides what mode is used during validation in the training.

There are some arguments that can be changed:

  • --exp_dir: The directory for storing the experimental results.
  • --data_dir: The data directory. Default is data/vcc2018.
  • seed: random seed.
  • update_freq: This is very important. See below.

Batch size and update_freq

By default, all LDNet models are trained with a batch size of 60. In my experiments, I used a single NVIDIA GeForce RTX 3090 with 24GB mdemory for training. I cannot fit the whole model in the GPU, so I accumulate gradients for update_freq forward passes and do one backward update. Before training, please check the train_batch_size in the config file, and set update_freq properly. For instance, in configs/LDNet_MobileNetV3_FFN_1e-3.yaml the train_batch_size is 20, so update_freq should be set to 3.

Inference

python inference.py --tag LDNet-ML_MobileNetV3_FFN_1e-3 --mode mean_listener

Use mode to specify which inference mode to use. Choices are: mean_net, all_listeners and mean_listener. By default, all checkpoints in the exp directory will be evaluated.

There are some arguments that can be changed:

  • ep: if you want to evaluate one model checkpoint, say, model-10000.pt, then simply pass --ep 10000.
  • start_ep: if you want to evaluate model checkpoints after a certain steps, say, 10000 steps later, then simply pass --start_ep 10000.

There are some files you can inspect after the evaluation:

  • <dataset_name>_<inference_mode>.csv: the validation and test set results.
  • <dataset_name>_<inference_mode>_<test/valid>/: figures that visualize the prediction distributions, including;
    • <ep>_distribution.png: distribution over the score range (1-5).
    • <ep>_utt_scatter_plot_utt: utterance-wise scatter plot of the ground truth and the predicted scores.
    • <ep>_sys_scatter_plot_utt: system-wise scatter plot of the ground truth and the predicted scores.

Acknowledgement

This repository inherits from this great unofficial MBNet implementation.

Citation

If you find this recipe useful, please consider citing following paper:

@article{huang2021ldnet,
  title={LDNet: Unified Listener Dependent Modeling in MOS Prediction for Synthetic Speech},
  author={Huang, Wen-Chin and Cooper, Erica and Yamagishi, Junichi and Toda, Tomoki},
  journal={arXiv preprint arXiv:2110.09103},
  year={2021}
}
Owner
Wen-Chin Huang (unilight)
Ph.D. candidate at Nagoya University, Japan. M.S. @ Nagoya University. B.S. @ National Taiwan University. RA at IIS, Academia Sinica, Taiwan.
Wen-Chin Huang (unilight)
PyTorch code for the paper "Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval".

Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval (M2HSE) PyTorch code fo

Xinlei-Pei 6 Dec 23, 2022
An implementation of "Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport"

Optex An implementation of Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport for TU Delft CS4240. You c

Hans Brouwer 33 Jan 05, 2023
Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising

Deep-Rep-MFIR Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising Publication: Deep Reparametrization of M

Goutam Bhat 39 Jan 04, 2023
[CVPR'21] FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space

FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space by Quande Liu, Cheng Chen, Ji

Quande Liu 178 Jan 06, 2023
EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network This repo contains the official Pytorch implementaion code and conf

Hu Zhang 175 Jan 07, 2023
Simple embedding based text classifier inspired by fastText, implemented in tensorflow

FastText in Tensorflow This project is based on the ideas in Facebook's FastText but implemented in Tensorflow. However, it is not an exact replica of

Alan Patterson 306 Dec 02, 2022
Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Moustafa Meshry 16 Oct 05, 2022
nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures.

nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures. Here you will find the scripts necessary to produce th

Jesse Willis 0 Jan 20, 2022
Unsupervised Feature Ranking via Attribute Networks.

FRANe Unsupervised Feature Ranking via Attribute Networks (FRANe) converts a dataset into a network (graph) with nodes that correspond to the features

7 Sep 29, 2022
EgoNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale

EgonNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale Paper: EgoNN: Egocentric Neural Network for Point Cloud

19 Sep 20, 2022
Official implementation of the paper DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows

DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows Official implementation of the paper DeFlow: Learning Complex Im

Valentin Wolf 86 Nov 16, 2022
A way to store images in YAML.

YAMLImg A way to store images in YAML. I made this after seeing Roadcrosser's JSON-G because it was too inspiring to ignore this opportunity. Installa

5 Mar 14, 2022
AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning

AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning (NeurIPS 2020) Introduction AdaShare is a novel and differentiable approach fo

94 Dec 22, 2022
The code of NeurIPS 2021 paper "Scalable Rule-Based Representation Learning for Interpretable Classification".

Rule-based Representation Learner This is a PyTorch implementation of Rule-based Representation Learner (RRL) as described in NeurIPS 2021 paper: Scal

Zhuo Wang 53 Dec 17, 2022
Improving XGBoost survival analysis with embeddings and debiased estimators

xgbse: XGBoost Survival Embeddings "There are two cultures in the use of statistical modeling to reach conclusions from data

Loft 242 Dec 30, 2022
A PyTorch implementation of the Relational Graph Convolutional Network (RGCN).

Torch-RGCN Torch-RGCN is a PyTorch implementation of the RGCN, originally proposed by Schlichtkrull et al. in Modeling Relational Data with Graph Conv

Thiviyan Singam 66 Nov 30, 2022
Dyalog-apl-docset - Dyalog APL Dash Docset Generator

Dyalog APL Dash Docset Generator o alasa e kili sona kepeken tenpo lili a A Dash

Maciej Goszczycki 1 Jan 10, 2022
Pytorch implementation of MLP-Mixer with loading pre-trained models.

MLP-Mixer-Pytorch PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision with the function of loading official ImageNet pre-trained p

Qiushi Yang 2 Sep 29, 2022
Composing methods for ML training efficiency

MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training.

MosaicML 2.8k Jan 08, 2023
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

Tae-Hwan Jung 775 Jan 08, 2023