An Efficient Implementation of Analytic Mesh Algorithm for 3D Iso-surface Extraction from Neural Networks

Overview

AnalyticMesh

Analytic Marching is an exact meshing solution from neural networks. Compared to standard methods, it completely avoids geometric and topological errors that result from insufficient sampling, by means of mathematically guaranteed analysis.

This repository gives an implementation of Analytic Marching algorithm. This algorithm is initially proposed in our conference paper Analytic Marching: An Analytic Meshing Solution from Deep Implicit Surface Networks, then finally improved in our journal paper: Learning and Meshing from Deep Implicit Surface Networks Using an Efficient Implementation of Analytic Marching.

Our codes provide web pages for manipulating your models via graphic interface, and a backend for giving full control of the algorithm by writing python codes.

Installation

First please download our codes:

git clone https://github.com/Karbo123/AnalyticMesh.git --depth=1
cd AnalyticMesh
export AMROOT=`pwd`

Backend

Backend gives a python binding of analytic marching. You can write simple python codes in your own project after compiling the backend.

Our implementation supports pytorch, and possibly also other deep learning frameworks (e.g. tensorflow), but we do not test other frameworks yet.

Requirements:

Compilation:

cd $AMROOT/backend
mkdir build && cd build
cmake ..
make -j8
cd ..

If your pytorch version < 1.5.1, you may need to fix cpp extension compile failure on some envs.

Make sure compiled library can pass the tests. Run:

CUDA_VISIBLE_DEVICES=0 PYTHONDONTWRITEBYTECODE=1 pytest -s -p no:warnings -p no:cacheprovider

It will generate some files under folder $AMROOT/backend/tmp. Generally, those generated meshes (.ply) are watertight, you can check with meshlab.

If it passes all the tests, you can finally link to somewhere so that python can find it:

ln -s $AMROOT `python -c 'import site; print(site.getsitepackages()[0])'`

Frontend

We also provide an easy-to-use interactive interface to apply analytic marching to your input network model by just clicking your mouse. To use the web interface, you may follow steps below to install.

Requirement:

Before compiling, you may need to modify the server information given in file frontend/pages/src/assets/index.js. Then you can compile those files by running:

cd $AMROOT/frontend/pages
npm install
npm run build

The $AMROOT/frontend/pages/dist directory is ready to be deployed. If you want to deploy web pages to a server, please additionally follow these instructions.

To start the server, simply run:

cd $AMROOT/frontend && python server.py

You can open the interface via either opening file $AMROOT/frontend/pages/dist/index.html on your local machine or opening the url to which the page is deployed.

Demo

We provide some samples in $AMROOT/examples, you can try them.

Here we show a simple example (which is from $AMROOT/examples/2_polytope.py):

import os
import torch
from AnalyticMesh import save_model, load_model, AnalyticMarching

class MLPPolytope(torch.nn.Module):
    def __init__(self):
        super(MLPPolytope, self).__init__()
        self.linear0 = torch.nn.Linear(3, 14)
        self.linear1 = torch.nn.Linear(14, 1)
        with torch.no_grad(): # here we give the weights explicitly since training takes time
            weight0 = torch.tensor([[ 1,  1,  1],
                                    [-1, -1, -1],
                                    [ 0,  1,  1],
                                    [ 0, -1, -1],
                                    [ 1,  0,  1],
                                    [-1,  0, -1],
                                    [ 1,  1,  0],
                                    [-1, -1,  0],
                                    [ 1,  0,  0],
                                    [-1,  0,  0],
                                    [ 0,  1,  0],
                                    [ 0, -1,  0],
                                    [ 0,  0,  1],
                                    [ 0,  0, -1]], dtype=torch.float32)
            bias0 = torch.zeros(14)
            weight1 = torch.ones([14], dtype=torch.float32).unsqueeze(0)
            bias1 = torch.tensor([-2], dtype=torch.float32)

            add_noise = lambda x: x + torch.randn_like(x) * (1e-7)
            self.linear0.weight.copy_(add_noise(weight0))
            self.linear0.bias.copy_(add_noise(bias0))
            self.linear1.weight.copy_(add_noise(weight1))
            self.linear1.bias.copy_(add_noise(bias1))

    def forward(self, x):
        return self.linear1(torch.relu(self.linear0(x)))


if __name__ == "__main__":
    #### save onnx
    DIR = os.path.dirname(os.path.abspath(__file__)) # the directory to save files
    onnx_path = os.path.join(DIR, "polytope.onnx")
    save_model(MLPPolytope(), onnx_path) # we save the model as onnx format
    print(f"we save onnx to: {onnx_path}")

    #### save ply
    ply_path = os.path.join(DIR, "polytope.ply")
    model = load_model(onnx_path) # load as a specific model
    AnalyticMarching(model, ply_path) # do analytic marching
    print(f"we save ply to: {ply_path}")

API

We mainly provide the following two ways to use analytic marching:

  • Web interface (provides an easy-to-use graphic interface)
  • Python API (gives more detailed control)
  1. Web interface

    You should compile both the backend and frontend to use this web interface. Its usage is detailed in the user guide on the web page.

  2. Python API

    It's very simple to use, just three lines of code.

    from AnalyticMesh import load_model, AnalyticMarching 
    model = load_model(load_onnx_path) 
    AnalyticMarching(model, save_ply_path)

    If results are not satisfactory, you may need to change default values of the AnalyticMarching function.

    To obtain an onnx model file, you can just use the save_model function we provide.

    from AnalyticMesh import save_model
    save_model(your_custom_nn_module, save_onnx_path)

Some tips:

  • It is highly recommended that you try dichotomy first as the initialization method.
  • If CUDA runs out of memory, try setting voxel_configs. It will partition the space and solve them serially.
  • More details are commented in our source codes.

Use Analytic Marching in your own project

There are generally three ways to use Analytic Marching.

  1. Directly representing a single shape by a multi-layer perceptron. For a single object, you can simply represent the shape as a single network. For example, you can directly fit a point cloud by a multi-layer perceptron. In this way, the weights of the network uniquely determine the shape.
  2. Generating the weights of multi-layer perceptron from a hyper-network. To learn from multiple shapes, one can use hyper-network to generate the weights of multi-layer perceptron in a learnable manner.
  3. Re-parameterizing the latent code into the bias of the first layer. To learn from multiple shapes, we can condition the network with a latent code input at the first layer (e.g. 3+256 -> 512 -> 512 -> 1). Note that the concatenated latent code can be re-parameterized and combined into the bias of the first layer. More specifically, the computation of the first layer can be re-parameterized as , where the newly computed bias is .

About

This repository is mainly maintained by Jiabao Lei (backend) and Yongyi Su (frontend). If you have any question, feel free to create an issue on github.

If you find our works useful, please consider citing our papers.

@inproceedings{
    Lei2020,
    title = {Analytic Marching: An Analytic Meshing Solution from Deep Implicit Surface Networks},
    author = {Jiabao Lei and Kui Jia},
    booktitle = {International Conference on Machine Learning 2020 {ICML-20}},
    year = {2020},
    month = {7}
}

@misc{
    Lei2021,
    title={Learning and Meshing from Deep Implicit Surface Networks Using an Efficient Implementation of Analytic Marching}, 
    author={Jiabao Lei and Kui Jia and Yi Ma},
    year={2021},
    eprint={2106.10031},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

Contact: [email protected]

Owner
Karbo
Karbo
Code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge.

Open Sesame This repository contains the code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge. Credits We built the project on t

9 Jul 24, 2022
这是一个yolox-pytorch的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤

Bubbliiiing 613 Jan 05, 2023
Automatic 2D-to-3D Video Conversion with CNNs

Deep3D: Automatic 2D-to-3D Video Conversion with CNNs How To Run To run this code. Please install MXNet following the official document. Deep3D requir

Eric Junyuan Xie 1.2k Dec 30, 2022
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 463 Dec 09, 2022
NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs.

NAS-HPO-Bench-II API Overview NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs. It helps a fair and low-

yoichi hirose 8 Nov 21, 2022
Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network."

R2RNet Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network." Jiang Hai, Zhu Xuan, Ren Yang, Yutong Hao, Fengzhu

77 Dec 24, 2022
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hongje Seong 72 Dec 14, 2022
Python package provinding tools for artistic interactive applications using AI

Documentation redrawing Python package provinding tools for artistic interactive applications using AI Created by ReDrawing Campinas team for the Open

ReDrawing Campinas 1 Sep 30, 2021
Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it

Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it. Study notes and a curated list of awesome resources of such topics.

mani 1.2k Jan 07, 2023
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi

MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu

Meta Research 141 Jan 07, 2023
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
A convolutional recurrent neural network for classifying A/B phases in EEG signals recorded for sleep analysis.

CAP-Classification-CRNN A deep learning model based on Inception modules paired with gated recurrent units (GRU) for the classification of CAP phases

Apurva R. Umredkar 2 Nov 25, 2022
Official implementation of "Watermarking Images in Self-Supervised Latent-Spaces"

🔍 Watermarking Images in Self-Supervised Latent-Spaces PyTorch implementation and pretrained models for the paper. For details, see Watermarking Imag

Meta Research 32 Dec 13, 2022
Synthesize photos from PhotoDNA using machine learning 🌱

Ribosome Synthesize photos from PhotoDNA. See the blog post for more information. Installation Dependencies You can install Python dependencies using

Anish Athalye 112 Nov 23, 2022
Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research

Welcome to AirSim AirSim is a simulator for drones, cars and more, built on Unreal Engine (we now also have an experimental Unity release). It is open

Microsoft 13.8k Jan 05, 2023
Official Implementation (PyTorch) of "Point Cloud Augmentation with Weighted Local Transformations", ICCV 2021

PointWOLF: Point Cloud Augmentation with Weighted Local Transformations This repository is the implementation of PointWOLF(To appear). Sihyeon Kim1*,

MLV Lab (Machine Learning and Vision Lab at Korea University) 16 Nov 03, 2022
This is a project based on ConvNets used to identify whether a road is clean or dirty. We have used MobileNet as our base architecture and the weights are based on imagenet.

PROJECT TITLE: CLEAN/DIRTY ROAD DETECTION USING TRANSFER LEARNING Description: This is a project based on ConvNets used to identify whether a road is

Faizal Karim 3 Nov 06, 2022
TorchXRayVision: A library of chest X-ray datasets and models.

torchxrayvision A library for chest X-ray datasets and models. Including pre-trained models. ( 🎬 promo video about the project) Motivation: While the

Machine Learning and Medicine Lab 575 Jan 08, 2023
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.

Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi

Ibrahim Sobh 62 Dec 25, 2022
The final project of "Applying AI to 3D Medical Imaging Data" from "AI for Healthcare" nanodegree - Udacity.

Quantifying Hippocampus Volume for Alzheimer's Progression Background Alzheimer's disease (AD) is a progressive neurodegenerative disorder that result

Omar Laham 1 Jan 14, 2022