Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it

Overview

Awesome AI-ML-DL Awesome License: CC BY-SA 4.0

Better NLP: Better NLP

NLP Java: NLP Java | NLP Clojure: NLP Clojure | NLP Kotlin: NLP Kotlin | NLP Scala: NLP Scala |
NLP using DL4J (cuda) NLP using DL4J (cuda)

Tribuo: Tribuo | DeepNetts: DeepNetts | Dataiku DSS: Dataiku DSS | Grakn: Grakn | Jupyter-Java: Jupyter-Java |
MLPMNist using DL4J: MLPMNist using DL4J | Zeppelin: Zeppelin


Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it. Study notes and a curated list of awesome resources of such topics.

This repo is dedicated to engineers, developers, data scientists and all other professions that take interest in AI, ML, DL and related sciences. To make learning interesting and to create a place to easily find all the necessary material. Please contribute, watch, star, fork and share the repo with others in your community.

Watching the repo will keep you posted of all the changes (commits) that go into the repo.

Also, please SPONSOR us, find out how-to!

Contributing

Contributions are very welcome, please share back with the wider community (and get credited for it)!

Please have a look at the CONTRIBUTING guidelines, also have a read about our licensing policy.

Sponsoring

With GitHub's new project sponsor program you can now sponsor projects like this, see how.

Comments
  • Wolfram Neural Net Repository

    Wolfram Neural Net Repository

    Probably a useful link to add to this repo (under Mathematica / Wolfram Language):

    https://resources.wolframcloud.com/NeuralNetRepository/

    The Wolfram Neural Net Repository is a public resource that hosts an expanding collection of trained and untrained neural network models, suitable for immediate evaluation, training, visualization, transfer learning and more.

    enhancement Hacktoberfest2019 
    opened by arnoudbuzing 7
  • Why to add

    Why to add "Tutorial" in names of R articles added?

    Articles are self explanatory from their headings. I feel adding tutorial specifically under R subsection is somewhat should not be there.

    Just like other good articles by great authors, their heading should be kept unchanged.

    opened by dA505819 5
  • Broken link

    Broken link

    Reached this awesome list from the : akullpp/awesome-java .

    https://github.com/neomatrix369/awesome-ai-ml-dl/blob/master/details/java-jvm.md#java

    Using Java for Artificial Intelligence (Tweet)

    This link is broken.

    Thank you!

    opened by tjj225 4
  • Added Computer Vision topic under Julia, Python and R

    Added Computer Vision topic under Julia, Python and R

    Purpose : To add materials of Computer Vision field into the repository as it had none.

    Contents : Motivation (intro to computer vision), Digital image processing, Opencv and its tutorials, Courses from other organisations, Conferences to follow and some famous computer vision blogs.

    @neomatrix369 please check the pull request. Waiting for your feedback on it.

    enhancement Hacktoberfest2019 
    opened by jerryfrancis-97 3
  • Need for adding Computer Vision topic under Julia, Python and R

    Need for adding Computer Vision topic under Julia, Python and R

    Computer vision topic should focus on the basics of image processing , different filters used, and will then move onto CNNs and deep learning methods of computer vision.

    enhancement Hacktoberfest2019 
    opened by jerryfrancis-97 3
  • Broken link for Object tracking under Image processing heading

    Broken link for Object tracking under Image processing heading

    https://github.com/virgili0/Virgilio/blob/master/serving/inferno/computer-vision/object-tracking/object-tracking.ipynb is giving error no. 404, under heading Image Processing under Computer Vision in /details/julia-python-and-r.md

    deadlinks 
    opened by therc01 2
  • Add Flyte

    Add Flyte

    Signed-off-by: Samhita Alla [email protected]

    Flyte is a workflow automation platform for complex, mission-critical data and ML processes at scale. A detailed overview of the features can be seen in the GitHub repo.

    enhancement 
    opened by samhita-alla 2
  • added measures.md #hacktoberfest

    added measures.md #hacktoberfest

    This PR is an extension to introduction to code-mixing and code-switching!

    • added a few important metrics and their descriptions useful for modeling code-mixing corpus
    • included useful resources which described the metrics in detail
    enhancement hacktoberfest hacktoberfest-accepted 
    opened by UmaGunturi 2
  • Add Automated Testing for Broken Links in Markdown Files

    Add Automated Testing for Broken Links in Markdown Files

    Requesting a new issue to be assigned to me:

    Add automated testing to ensure all links in markdown files are not broken, and alert when there are issues with links.

    @neomatrix369 - let me know if you want me to work on this issue or if it's not helpful for your project! I would love to contribute as part of hacktoberfest.

    enhancement deadlinks automation 
    opened by MattRudy 2
  • Find and fix broken/dead links

    Find and fix broken/dead links

    As see from #53 we can have broken/dead links, links that once worked can be unavailable for reasons outside the control of this project/repo!

    Hence I have decided to manually scan (for now) the repo from time to time for such links and fix them - if there is one. Here are the steps to take:

    New broken/dead links

    • find missing links using, markdown-link-check (see https://www.npmjs.com/package/markdown-link-check to find out how to install and use it)
    • once installed, use the below command in the root of the project:
    $ ls **/*.md | xargs -n 1 markdown-link-check --quiet
    
    ### This recursively finds all markdown files in the repo, 
    ### scans them and only reports those files which have 
    ### broken/dead links in them. 
    
    • try to fix the broken/dead links by hand
    • we are only looking for HTTP response code of 404, any other response codes can be ignored
    • if a fix cannot be found, best mark the link with a '[deadlink]' marker
    • in certain cases it's a good idea to leave the old link with the '[deadlink]' marker next to it even though we have found a new working one

    Existing broken/dead links across the repo

    Existing dead/broken links are marked with the '[deadlink]' marker.

    As part of this issue, fixing these links is also helpful - although if they are left in there it's cause their fix wasn't immediately available or found on searching on the relevant sources.

    Eventually, we can automate the task of finding such links via a GitHub action during GitHub events like commit, push or pull request creation.

    good first issue hacktoberfest 
    opened by neomatrix369 4
  • Add more features to the BetterNLP library

    Add more features to the BetterNLP library

    On the back of this discussion, @shahanesanket and I will take this further https://github.com/pandas-profiling/pandas-profiling/issues/278, some high-level ideas:

    • Missing value analysis
    • Text length analysis
      • 2.1 min, max, average, quantiles
      • 2.2 freq words, infrequent words (can include the deepmoji project's tokenizer. it's very robust)
      • 2.2 word cloud. (if it isn't a far stretched goal)

    @shahanesanket let's continue with our discussions here.

    enhancement hacktoberfest discussion 
    opened by neomatrix369 3
Owner
mani
3X @Kaggle Expert @Java champion, Polyglot, Software Crafter, performance, @graalvm, AI, ML, DL, NLP, Data Science, Developer communities, speaker, blogger
mani
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN in PyTorch Official implementation of StyleCariGAN:Caricature Generation via StyleGAN Feature Map Modulation in PyTorch Requirements PyTo

PeterZhouSZ 49 Oct 31, 2022
A PyTorch implementation of " EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks."

EfficientNet A PyTorch implementation of EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. [arxiv] [Official TF Repo] Implemen

AhnDW 298 Dec 10, 2022
[CVPR2021 Oral] End-to-End Video Instance Segmentation with Transformers

VisTR: End-to-End Video Instance Segmentation with Transformers This is the official implementation of the VisTR paper: Installation We provide instru

Yuqing Wang 687 Jan 07, 2023
SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis

SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis Pretrained Models In this work, we created synthetic tissue

Emirhan Kurtuluş 1 Feb 07, 2022
💡 Learnergy is a Python library for energy-based machine learning models.

Learnergy: Energy-based Machine Learners Welcome to Learnergy. Did you ever reach a bottleneck in your computational experiments? Are you tired of imp

Gustavo Rosa 57 Nov 17, 2022
Implementation of a Transformer, but completely in Triton

Transformer in Triton (wip) Implementation of a Transformer, but completely in Triton. I'm completely new to lower-level neural net code, so this repo

Phil Wang 152 Dec 22, 2022
Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness?

Adversrial Machine Learning Benchmarks This code belongs to the papers: Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness? Det

Adversarial Machine Learning 9 Nov 27, 2022
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
MiraiML: asynchronous, autonomous and continuous Machine Learning in Python

MiraiML Mirai: future in japanese. MiraiML is an asynchronous engine for continuous & autonomous machine learning, built for real-time usage. Usage In

Arthur Paulino 25 Jul 27, 2022
Generative Handwriting using LSTM Mixture Density Network with TensorFlow

Generative Handwriting Demo using TensorFlow An attempt to implement the random handwriting generation portion of Alex Graves' paper. See my blog post

hardmaru 686 Nov 24, 2022
Element selection for functional materials discovery by integrated machine learning of atomic contributions to properties

Element selection for functional materials discovery by integrated machine learning of atomic contributions to properties 8.11.2021 Andrij Vasylenko I

Leverhulme Research Centre for Functional Materials Design 4 Dec 20, 2022
Code accompanying paper: Meta-Learning to Improve Pre-Training

Meta-Learning to Improve Pre-Training This folder contains code to run experiments in the paper Meta-Learning to Improve Pre-Training, NeurIPS 2021. P

28 Dec 31, 2022
Official PyTorch implementation of BlobGAN: Spatially Disentangled Scene Representations

BlobGAN: Spatially Disentangled Scene Representations Official PyTorch Implementation Paper | Project Page | Video | Interactive Demo BlobGAN.mp4 This

148 Dec 29, 2022
AfriBERTa: Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages

AfriBERTa: Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages This repository contains the code for the pa

Kelechi 40 Nov 24, 2022
(CVPR 2022 - oral) Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry

Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry Official implementation of the paper Multi-View Depth Est

Bae, Gwangbin 138 Dec 28, 2022
A simple algorithm for extracting tree height in sparse scene from point cloud data.

TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING This is the offical python implementation of the paper "Tree Height Extraction in

6 Oct 28, 2022
[ICCV 2021] Code release for "Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks"

Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks By Yikai Wang, Yi Yang, Fuchun Sun, Anbang Yao. This is the pytorc

Yikai Wang 26 Nov 20, 2022
A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation".

Dual-Contrastive-Learning A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation". Y

hoshi-hiyouga 85 Dec 26, 2022
A very impractical 3D rendering engine that runs in the python terminal.

Terminal-3D-Render A very impractical 3D rendering engine that runs in the python terminal. do NOT try to run this program using the standard python I

23 Dec 31, 2022
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

112 Nov 30, 2022