Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it

Overview

Awesome AI-ML-DL Awesome License: CC BY-SA 4.0

Better NLP: Better NLP

NLP Java: NLP Java | NLP Clojure: NLP Clojure | NLP Kotlin: NLP Kotlin | NLP Scala: NLP Scala |
NLP using DL4J (cuda) NLP using DL4J (cuda)

Tribuo: Tribuo | DeepNetts: DeepNetts | Dataiku DSS: Dataiku DSS | Grakn: Grakn | Jupyter-Java: Jupyter-Java |
MLPMNist using DL4J: MLPMNist using DL4J | Zeppelin: Zeppelin


Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it. Study notes and a curated list of awesome resources of such topics.

This repo is dedicated to engineers, developers, data scientists and all other professions that take interest in AI, ML, DL and related sciences. To make learning interesting and to create a place to easily find all the necessary material. Please contribute, watch, star, fork and share the repo with others in your community.

Watching the repo will keep you posted of all the changes (commits) that go into the repo.

Also, please SPONSOR us, find out how-to!

Contributing

Contributions are very welcome, please share back with the wider community (and get credited for it)!

Please have a look at the CONTRIBUTING guidelines, also have a read about our licensing policy.

Sponsoring

With GitHub's new project sponsor program you can now sponsor projects like this, see how.

Comments
  • Wolfram Neural Net Repository

    Wolfram Neural Net Repository

    Probably a useful link to add to this repo (under Mathematica / Wolfram Language):

    https://resources.wolframcloud.com/NeuralNetRepository/

    The Wolfram Neural Net Repository is a public resource that hosts an expanding collection of trained and untrained neural network models, suitable for immediate evaluation, training, visualization, transfer learning and more.

    enhancement Hacktoberfest2019 
    opened by arnoudbuzing 7
  • Why to add

    Why to add "Tutorial" in names of R articles added?

    Articles are self explanatory from their headings. I feel adding tutorial specifically under R subsection is somewhat should not be there.

    Just like other good articles by great authors, their heading should be kept unchanged.

    opened by dA505819 5
  • Broken link

    Broken link

    Reached this awesome list from the : akullpp/awesome-java .

    https://github.com/neomatrix369/awesome-ai-ml-dl/blob/master/details/java-jvm.md#java

    Using Java for Artificial Intelligence (Tweet)

    This link is broken.

    Thank you!

    opened by tjj225 4
  • Added Computer Vision topic under Julia, Python and R

    Added Computer Vision topic under Julia, Python and R

    Purpose : To add materials of Computer Vision field into the repository as it had none.

    Contents : Motivation (intro to computer vision), Digital image processing, Opencv and its tutorials, Courses from other organisations, Conferences to follow and some famous computer vision blogs.

    @neomatrix369 please check the pull request. Waiting for your feedback on it.

    enhancement Hacktoberfest2019 
    opened by jerryfrancis-97 3
  • Need for adding Computer Vision topic under Julia, Python and R

    Need for adding Computer Vision topic under Julia, Python and R

    Computer vision topic should focus on the basics of image processing , different filters used, and will then move onto CNNs and deep learning methods of computer vision.

    enhancement Hacktoberfest2019 
    opened by jerryfrancis-97 3
  • Broken link for Object tracking under Image processing heading

    Broken link for Object tracking under Image processing heading

    https://github.com/virgili0/Virgilio/blob/master/serving/inferno/computer-vision/object-tracking/object-tracking.ipynb is giving error no. 404, under heading Image Processing under Computer Vision in /details/julia-python-and-r.md

    deadlinks 
    opened by therc01 2
  • Add Flyte

    Add Flyte

    Signed-off-by: Samhita Alla [email protected]

    Flyte is a workflow automation platform for complex, mission-critical data and ML processes at scale. A detailed overview of the features can be seen in the GitHub repo.

    enhancement 
    opened by samhita-alla 2
  • added measures.md #hacktoberfest

    added measures.md #hacktoberfest

    This PR is an extension to introduction to code-mixing and code-switching!

    • added a few important metrics and their descriptions useful for modeling code-mixing corpus
    • included useful resources which described the metrics in detail
    enhancement hacktoberfest hacktoberfest-accepted 
    opened by UmaGunturi 2
  • Add Automated Testing for Broken Links in Markdown Files

    Add Automated Testing for Broken Links in Markdown Files

    Requesting a new issue to be assigned to me:

    Add automated testing to ensure all links in markdown files are not broken, and alert when there are issues with links.

    @neomatrix369 - let me know if you want me to work on this issue or if it's not helpful for your project! I would love to contribute as part of hacktoberfest.

    enhancement deadlinks automation 
    opened by MattRudy 2
  • Find and fix broken/dead links

    Find and fix broken/dead links

    As see from #53 we can have broken/dead links, links that once worked can be unavailable for reasons outside the control of this project/repo!

    Hence I have decided to manually scan (for now) the repo from time to time for such links and fix them - if there is one. Here are the steps to take:

    New broken/dead links

    • find missing links using, markdown-link-check (see https://www.npmjs.com/package/markdown-link-check to find out how to install and use it)
    • once installed, use the below command in the root of the project:
    $ ls **/*.md | xargs -n 1 markdown-link-check --quiet
    
    ### This recursively finds all markdown files in the repo, 
    ### scans them and only reports those files which have 
    ### broken/dead links in them. 
    
    • try to fix the broken/dead links by hand
    • we are only looking for HTTP response code of 404, any other response codes can be ignored
    • if a fix cannot be found, best mark the link with a '[deadlink]' marker
    • in certain cases it's a good idea to leave the old link with the '[deadlink]' marker next to it even though we have found a new working one

    Existing broken/dead links across the repo

    Existing dead/broken links are marked with the '[deadlink]' marker.

    As part of this issue, fixing these links is also helpful - although if they are left in there it's cause their fix wasn't immediately available or found on searching on the relevant sources.

    Eventually, we can automate the task of finding such links via a GitHub action during GitHub events like commit, push or pull request creation.

    good first issue hacktoberfest 
    opened by neomatrix369 4
  • Add more features to the BetterNLP library

    Add more features to the BetterNLP library

    On the back of this discussion, @shahanesanket and I will take this further https://github.com/pandas-profiling/pandas-profiling/issues/278, some high-level ideas:

    • Missing value analysis
    • Text length analysis
      • 2.1 min, max, average, quantiles
      • 2.2 freq words, infrequent words (can include the deepmoji project's tokenizer. it's very robust)
      • 2.2 word cloud. (if it isn't a far stretched goal)

    @shahanesanket let's continue with our discussions here.

    enhancement hacktoberfest discussion 
    opened by neomatrix369 3
Owner
mani
3X @Kaggle Expert @Java champion, Polyglot, Software Crafter, performance, @graalvm, AI, ML, DL, NLP, Data Science, Developer communities, speaker, blogger
mani
MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution

Octave Convolution MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution Imag

Meta Research 549 Dec 28, 2022
A simple software for capturing human body movements using the Kinect camera.

KinectMotionCapture A simple software for capturing human body movements using the Kinect camera. The software can seamlessly save joints and bones po

Aleksander Palkowski 5 Aug 13, 2022
Attention-guided gan for synthesizing IR images

SI-AGAN Attention-guided gan for synthesizing IR images This repository contains the Tensorflow code for "Pedestrian Gender Recognition by Style Trans

1 Oct 25, 2021
Implementation of the paper Recurrent Glimpse-based Decoder for Detection with Transformer.

REGO-Deformable DETR By Zhe Chen, Jing Zhang, and Dacheng Tao. This repository is the implementation of the paper Recurrent Glimpse-based Decoder for

Zhe Chen 33 Nov 30, 2022
1st Solution For NeurIPS 2021 Competition on ML4CO Dual Task

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

MEGVII Research 24 Sep 08, 2022
Repository for paper "Non-intrusive speech intelligibility prediction from discrete latent representations"

Non-Intrusive Speech Intelligibility Prediction from Discrete Latent Representations Official repository for paper "Non-Intrusive Speech Intelligibili

Alex McKinney 5 Oct 25, 2022
Byte-based multilingual transformer TTS for low-resource/few-shot language adaptation.

One model to speak them all 🌎 Audio Language Text ▷ Chinese 人人生而自由,在尊严和权利上一律平等。 ▷ English All human beings are born free and equal in dignity and rig

Mutian He 60 Nov 14, 2022
The source code of the paper "Understanding Graph Neural Networks from Graph Signal Denoising Perspectives"

GSDN-F and GSDN-EF This repository provides a reference implementation of GSDN-F and GSDN-EF as described in the paper "Understanding Graph Neural Net

Guoji Fu 18 Nov 14, 2022
Direct Multi-view Multi-person 3D Human Pose Estimation

Implementation of NeurIPS-2021 paper: Direct Multi-view Multi-person 3D Human Pose Estimation [paper] [video-YouTube, video-Bilibili] [slides] This is

Sea AI Lab 251 Dec 30, 2022
Official Datasets and Implementation from our Paper "Video Class Agnostic Segmentation in Autonomous Driving".

Video Class Agnostic Segmentation [Method Paper] [Benchmark Paper] [Project] [Demo] Official Datasets and Implementation from our Paper "Video Class A

Mennatullah Siam 26 Oct 24, 2022
VISSL is FAIR's library of extensible, modular and scalable components for SOTA Self-Supervised Learning with images.

What's New Below we share, in reverse chronological order, the updates and new releases in VISSL. All VISSL releases are available here. [Oct 2021]: V

Meta Research 2.9k Jan 07, 2023
"Learning and Analyzing Generation Order for Undirected Sequence Models" in Findings of EMNLP, 2021

undirected-generation-dev This repo contains the source code of the models described in the following paper "Learning and Analyzing Generation Order f

Yichen Jiang 0 Mar 25, 2022
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 04, 2023
Data pipelines for both TensorFlow and PyTorch!

rapidnlp-datasets Data pipelines for both TensorFlow and PyTorch ! If you want to load public datasets, try: tensorflow/datasets huggingface/datasets

1 Dec 08, 2021
A computational block to solve entity alignment over textual attributes in a knowledge graph creation pipeline.

How to apply? Create your config.ini file following the example provided in config.ini Choose one of the options below to run: Run with Python3 pip in

Scientific Data Management Group 3 Jun 23, 2022
A PyTorch implementation of EventProp [https://arxiv.org/abs/2009.08378], a method to train Spiking Neural Networks

Spiking Neural Network training with EventProp This is an unofficial PyTorch implemenation of EventProp, a method to compute exact gradients for Spiki

Pedro Savarese 35 Jul 29, 2022
An implementation of the efficient attention module.

Efficient Attention An implementation of the efficient attention module. Description Efficient attention is an attention mechanism that substantially

Shen Zhuoran 194 Dec 15, 2022
A Small and Easy approach to the BraTS2020 dataset (2D Segmentation)

BraTS2020 A Light & Scalable Solution to BraTS2020 | Medical Brain Tumor Segmentation (2D Segmentation) Developed the segmentation models for segregat

Gunjan Haldar 0 Jan 19, 2022
A PyTorch Implementation of "Watch Your Step: Learning Node Embeddings via Graph Attention" (NeurIPS 2018).

Attention Walk ⠀⠀ A PyTorch Implementation of Watch Your Step: Learning Node Embeddings via Graph Attention (NIPS 2018). Abstract Graph embedding meth

Benedek Rozemberczki 303 Dec 09, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.

TFlite Ultra Fast Lane Detection Inference Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite. So

Ibai Gorordo 12 Aug 27, 2022