kyle's vision of how datadog's python client should look

Overview

kyle's datadog python vision/proposal

not for production use

See examples/comprehensive.py for a mostly working example of the proposed API.

📈 🐶 ❤️ 🐍

The Datadog Python products are great but the Python offering is fragmented.

One has to configure and initialize 4 different clients (metrics, logs, tracing, profiling) to get a cohesive experience.

It's time to unify and provide a great user experience out of the box for users.

proposed API

from datadog import DDClient, DDConfig

# Options are
#  - type-checked + validated
#  - available as corresponding environment vars
ddcfg = DDConfig(
        agent_url="localhost",
        datadog_site="us1.datadoghq.com",
        service="my-python-service",
        env="prod",
        version="0.01",
        tracing_enabled=True,
        tracing_patch=True,
        tracing_modules=["django", "redis", "psycopg2"],
        tracing_sampling_rules=[("my-python-service", "prod", 0.02)],
        profiling_enabled=True,
        security_enabled=True,
        runtime_metrics_enabled=True,
)
ddclient = DDClient(config=ddcfg)

# metrics
ddclient.gauge()
ddclient.measure()
ddclient.count()
ddclient.flush_metrics()

# logs
ddclient.log()
ddclient.warning()
ddclient.exception()
ddclient.info()
ddclient.debug()
log = ddclient.getLogger()
ddclient.DDLogHandler()  # or datadog.DDLogHandler()
ddclient.flush_logs()

# tracing
ddclient.trace()
ddclient.patch()
ddclient.flush_traces()

# profiling
ddclient.profiling_start()
ddclient.profiling_stop()
ddclient.flush_profiles()

package structure

+datadog
|
|- DDClient
|- DDConfig

ddtrace-run

I propose datadog-run which will install a default DDClient, initialized only via environment variable to datadog.client. Essentially sitecustomize.py would just be something like:

import datadog
from datadog import DDConfig, DDClient


_DEFAULT_CONFIG = dict(
  tracing_patch=True,  # different from the default when using the library manually
  # ... rest of defaults
)

datadog.client = DDClient(DDConfig(default_config=_DEFAULT_CONFIG))

open questions/concerns

  • What API is exposed for flushing data?
    • Unified for entire client?
      • Reuse connections/batch data for performance.
    • Must allow both automatic + manual strategies
      • Buffer size
      • Flush period
  • What to use to locate an agent?
    • UDS vs HTTP(S) support
    • URL is weird/not intuitive with unix sockets
  • Should config values store whether they are user defined?
Owner
Kyle Verhoog
why waste time say lot word when few word do trick
Kyle Verhoog
The Python ensemble sampling toolkit for affine-invariant MCMC

emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense

Dan Foreman-Mackey 1.3k Jan 04, 2023
Pydrawer: The Python package for visualizing curves and linear transformations in a super simple way

pydrawer 📐 The Python package for visualizing curves and linear transformations in a super simple way. ✏️ Installation Install pydrawer package with

Dylan Tintenfich 56 Dec 30, 2022
Functions for easily making publication-quality figures with matplotlib.

Data-viz utils 📈 Functions for data visualization in matplotlib 📚 API Can be installed using pip install dvu and then imported with import dvu. You

Chandan Singh 16 Sep 15, 2022
Log visualizer for whirl-framework

Lumberjack Log visualizer for whirl-framework Установка pip install -r requirements.txt Как пользоваться python3 lumberjack.py -l путь до лога -o

Vladimir Malinovskii 2 Dec 19, 2022
Movie recommendation using RASA, TigerGraph

Demo run: The below video will highlight the runtime of this setup and some sample real-time conversations using the power of RASA + TigerGraph, Steps

Sudha Vijayakumar 3 Sep 10, 2022
Python package to Create, Read, Write, Edit, and Visualize GSFLOW models

pygsflow pyGSFLOW is a python package to Create, Read, Write, Edit, and Visualize GSFLOW models API Documentation pyGSFLOW API documentation can be fo

pyGSFLOW 21 Dec 14, 2022
metedraw is a project mainly for data visualization projects of Atmospheric Science, Marine Science, Environmental Science or other majors

It is mainly for data visualization projects of Atmospheric Science, Marine Science, Environmental Science or other majors.

Nephele 11 Jul 05, 2022
A central task in drug discovery is searching, screening, and organizing large chemical databases

A central task in drug discovery is searching, screening, and organizing large chemical databases. Here, we implement clustering on molecular similarity. We support multiple methods to provide a inte

NVIDIA Corporation 124 Jan 07, 2023
Create artistic visualisations with your exercise data (Python version)

strava_py Create artistic visualisations with your exercise data (Python version). This is a port of the R strava package to Python. Examples Facets A

Marcus Volz 53 Dec 28, 2022
A small timeseries transformation API built on Flask and Pandas

#Mcflyin ###A timeseries transformation API built on Pandas and Flask This is a small demo of an API to do timeseries transformations built on Flask a

Rob Story 84 Mar 25, 2022
3D rendered visualization of the austrian monuments registry

Visualization of the Austrian Monuments Visualization of the monument landscape of the austrian monuments registry (Bundesdenkmalamt Denkmalverzeichni

Nikolai Janakiev 3 Oct 24, 2019
A Python function that makes flower plots.

Flower plot A Python 3.9+ function that makes flower plots. Installation This package requires at least Python 3.9. pip install

Thomas Roder 4 Jun 12, 2022
A high performance implementation of HDBSCAN clustering. http://hdbscan.readthedocs.io/en/latest/

HDBSCAN Now a part of scikit-learn-contrib HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over va

Leland McInnes 91 Dec 29, 2022
Example Code Notebooks for Data Visualization in Python

This repository contains sample code scripts for creating awesome data visualizations from scratch using different python libraries (such as matplotli

Javed Ali 27 Jan 04, 2023
JSNAPY example: Validate NAT policies

JSNAPY example: Validate NAT policies Overview This example will show how to use JSNAPy to make sure the expected NAT policy matches are taking place.

Calvin Remsburg 1 Jan 07, 2022
DataVisualization - The evolution of my arduino and python journey. New level of competence achieved

DataVisualization - The evolution of my arduino and python journey. New level of competence achieved

1 Jan 03, 2022
A comprehensive tutorial for plotting focal mechanism

Focal_Mechanisms_Demo A comprehensive tutorial for plotting focal mechanism "beach-balls" using the PyGMT package for Python. (Resulting map of this d

3 Dec 13, 2022
An XLSX spreadsheet renderer for Django REST Framework.

drf-renderer-xlsx provides an XLSX renderer for Django REST Framework. It uses OpenPyXL to create the spreadsheet and returns the data.

The Wharton School 166 Dec 01, 2022
Statistical data visualization using matplotlib

seaborn: statistical data visualization Seaborn is a Python visualization library based on matplotlib. It provides a high-level interface for drawing

Michael Waskom 10.2k Dec 30, 2022
Glue is a python project to link visualizations of scientific datasets across many files.

Glue Glue is a python project to link visualizations of scientific datasets across many files. Click on the image for a quick demo: Features Interacti

675 Dec 09, 2022