AB-test-analyzer - Python class to perform AB test analysis

Overview

AB-test-analyzer

Python class to perform AB test analysis

Overview

This repo contains a Python class to perform an A/B/C… test analysis with proportion-based metrics (including posthoc test). In practice, the class can be used along with any appropriate RDBMS retrieval tool (e.g. google.cloud.bigquery module for BigQuery) so that, together, they result in an end-to-end analysis process, i.e. from querying the experiment data stored originally in SQL to arriving at the complete analysis results.

The ABTest Class

The class is named ABTest. It is written on top of several well-known libraries (numpy, pandas, scipy, and statsmodels). The class' main functionality is to consume an experiment results data frame (experiment_df), metric information (nominator_metric, denominator_metric), and meta-information about the platform being experimented (platform) to perform two layers of statistical tests.

First, it will perform a Chi-square test on the aggregate data level. If this test is significant, the function will continue to perform a posthoc test that consists of testing each pair of experimental groups to report their adjusted p-values, as well as their absolute lift (difference) confidence intervals. Moreover, the class also has a method to calculate the statistical power of the experiment.

Class Init

To create an instance of ABTest class, we need to pass the following parameters--that also become the class instance attributes:

  1. experiment_df: pandas dataframe that contains the experiment data to be analyzed. The data contained must form a proportion based metric (nominator_metric/denominator_metric <= 1). More on this parameter can be found in a later section.
  2. nominator_metric: string representing the name of the nominator metric, one constituent of the proportion-based metric in experiment_df, e.g. "transaction"
  3. denominator_metric: string representing the name of the denominator metric, another constituent of the proportion-based metric in experiment_df, e.g. "visit"
  4. platform: string representing the platform represented by the experiment data, e.g. "android", "ios"

Methods

get_reporting_df

This function has one parameter called metric_level (string, default value is None) that specifies the metric level of the experiment data whose reporting dataframe is to be derived. Two common values for this parameter are "user" and "event".

Below is the output example from calling self.get_reporting_df(metric_level='user')

|    | experiment_group   | metric_level   |   targeted |   redeemed |   conversion |
|---:|:-------------------|:---------------|-----------:|-----------:|-------------:|
|  0 | control            | user           |       8333 |       1062 |     0.127445 |
|  1 | variant1           | user           |       8002 |        825 |     0.103099 |
|  2 | variant2           | user           |       8251 |       1289 |     0.156223 |
|  3 | variant3           | user           |       8275 |       1228 |     0.148399 |

posthoc_test

This function is the engine under the hood of the analyze method. It has three parameters:

  1. reporting_df: pandas dataframe, output of get_reporting_df method
  2. metric_level: string, the metric level of the experiment data whose reporting dataframe is to be derived
  3. alpha: float, the used alpha in the analysis

analyze

The main function to analyze the AB test. It has two parameters:

  1. metric_level: string, the metric level of the experiment data whose reporting dataframe is to be derived (default value is None). Two common values for this parameter are "user" and "event"
  2. alpha: float, the used alpha in the analysis (default value is 0.05)

The output of this method is a pandas dataframe with the following columns:

  1. metric_level: optional, only if metric_level parameter is not None
  2. pair: the segment pair being individually tested using z-proportion test
  3. raw_p_value: the raw p-value from the individual z-proportion test
  4. adj_p_value: the adjusted p-value (using Benjamini-Hochberg method) from z-proportion tests. Note that significant result is marked with *
  5. mean_ci: the mean (center value) of the metrics delta confidence interval at 1-alpha
  6. lower_ci: the lower bound of the metrics delta confidence interval at 1-alpha
  7. upper_ci: the upper bound of the metrics delta confidence interval at 1-alpha

Sample output:

|    | metric_level   | pair                 |   raw_p_value | adj_p_value             |     mean_ci |    lower_ci |    upper_ci |
|---:|:---------------|:---------------------|--------------:|:------------------------|------------:|------------:|------------:|
|  0 | user           | control vs variant1  |   1.13731e-06 | 1.592240591875927e-06*  |  -0.0243459 |  -0.0341516 |  -0.0145402 |
|  1 | user           | control vs variant2  |   1.08192e-07 | 1.8933619380632198e-07* |   0.0287784 |   0.0181608 |   0.0393959 |
|  2 | user           | control vs variant3  |   9.00223e-05 | 0.00010502606726165857* |   0.0209537 |   0.0104664 |   0.031441  |
|  3 | user           | variant1 vs variant2 |   7.82096e-24 | 2.737334684573585e-23*  |   0.0531243 |   0.0427802 |   0.0634683 |
|  4 | user           | variant1 vs variant3 |   3.23786e-18 | 7.554997289146693e-18*  |   0.0452996 |   0.0350976 |   0.0555015 |
|  5 | user           | variant2 vs variant1 |   7.82096e-24 | 2.737334684573585e-23*  |  -0.0531243 |  -0.0634683 |  -0.0427802 |
|  6 | user           | variant2 vs variant3 |   0.161595    | 0.16159493454321772     | nan         | nan         | nan         |

calculate_power

This function calculates the experiment’s statistical power for the supplied experiment_df. It has three parameters:

  1. practical_lift: float, the metrics lift that perceived meaningful
  2. alpha: float, the used alpha in the analysis (default value is 0.05)
  3. metric_level: string, the metric level of the experiment data whose reporting dataframe is to be derived (default value is None). Two common values for this parameter are "user" and "event"

Sample output:

The experiment's statistical power is 0.2680540196528648

Data Format

This section is dedicated to explaining the details of the format of experiment_df , i.e. the main data supply for the ABTest class.
experiment_df must at least have three columns with the following names:

  1. experiment_group: self-explanatory
  2. denominator_metric: the name of the denominator metric, one constituent of the proportion-based metric in experiment_df, e.g. "visit"
  3. nominator_metric: the name of the nominator metric, one constituent of the proportion-based metric in experiment_df, e.g. "transaction"
  4. (optional) metric_level: the metric level of the data (usually either "user" or "event")

In practice, this dataframe is derived by querying SQL tables using an appropriate retrieval tool.

Sample experiment_df

|    | experiment_group   | metric_level   |   targeted |   redeemed |
|---:|:-------------------|:---------------|-----------:|-----------:|
|  0 | control            | user           |       8333 |       1062 |
|  1 | variant1           | user           |       8002 |        825 |
|  2 | variant2           | user           |       8251 |       1289 |
|  3 | variant3           | user           |       8275 |       1228 |

Usage Guideline

The general steps:

  1. Prepare experiment_df (via anything you’d prefer)
  2. Create an ABTest class instance
  3. To get reporting dataframe, call get_reporting_df method
  4. To analyze end-to-end, call analyze method
  5. To calculate experiment’s statistical power, call calculate_power method

See the sample usage notebook for more details.

eoplatform is a Python package that aims to simplify Remote Sensing Earth Observation by providing actionable information on a wide swath of RS platforms and provide a simple API for downloading and visualizing RS imagery

An Earth Observation Platform Earth Observation made easy. Report Bug | Request Feature About eoplatform is a Python package that aims to simplify Rem

Matthew Tralka 4 Aug 11, 2022
Productivity Tools for Plotly + Pandas

Cufflinks This library binds the power of plotly with the flexibility of pandas for easy plotting. This library is available on https://github.com/san

Jorge Santos 2.7k Dec 30, 2022
Generate a roam research like Network Graph view from your Notion pages.

Notion Graph View Export Notion pages to a Roam Research like graph view.

Steve Sun 214 Jan 07, 2023
TensorDebugger (TDB) is a visual debugger for deep learning. It extends TensorFlow with breakpoints + real-time visualization of the data flowing through the computational graph

TensorDebugger (TDB) is a visual debugger for deep learning. It extends TensorFlow (Google's Deep Learning framework) with breakpoints + real-time visualization of the data flowing through the comput

Eric Jang 1.4k Dec 15, 2022
Pydrawer: The Python package for visualizing curves and linear transformations in a super simple way

pydrawer 📐 The Python package for visualizing curves and linear transformations in a super simple way. ✏️ Installation Install pydrawer package with

Dylan Tintenfich 56 Dec 30, 2022
a plottling library for python, based on D3

Hello August 2013 Hello! Maybe you're looking for a nice Python interface to build interactive, javascript based plots that look as nice as all those

Mike Dewar 1.4k Dec 28, 2022
Create SVG drawings from vector geodata files (SHP, geojson, etc).

SVGIS Create SVG drawings from vector geodata files (SHP, geojson, etc). SVGIS is great for: creating small multiples, combining lots of datasets in a

Neil Freeman 78 Dec 09, 2022
Use Perspective to create the chart for the trader’s dashboard

Task Overview | Installation Instructions | Link to Module 3 Introduction Experience Technology at JP Morgan Chase Try out what real work is like in t

Abdulazeez Jimoh 1 Jan 22, 2022
Visualization Data Drug in thailand during 2014 to 2020

Visualization Data Drug in thailand during 2014 to 2020 Data sorce from ข้อมูลเปิดภาครัฐ สำนักงาน ป.ป.ส Inttroducing program Using tkinter module for

Narongkorn 1 Jan 05, 2022
NorthPitch is a python soccer plotting library that sits on top of Matplotlib

NorthPitch is a python soccer plotting library that sits on top of Matplotlib.

Devin Pleuler 30 Feb 22, 2022
Simple, realtime visualization of neural network training performance.

pastalog Simple, realtime visualization server for training neural networks. Use with Lasagne, Keras, Tensorflow, Torch, Theano, and basically everyth

Rewon Child 416 Dec 29, 2022
A Python library created to assist programmers with complex mathematical functions

libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using mat

Simple 73 Oct 02, 2022
HW_02 Data visualisation task

HW_02 Data visualisation and Matplotlib practice Instructions for HW_02 Idea for data analysis As I was brainstorming ideas and running through databa

9 Dec 13, 2022
Data Visualization Guide for Presentations, Reports, and Dashboards

This is a highly practical and example-based guide on visually representing data in reports and dashboards.

Anton Zhiyanov 395 Dec 29, 2022
flask extension for integration with the awesome pydantic package

Flask-Pydantic Flask extension for integration of the awesome pydantic package with Flask. Installation python3 -m pip install Flask-Pydantic Basics v

249 Jan 06, 2023
kyle's vision of how datadog's python client should look

kyle's datadog python vision/proposal not for production use See examples/comprehensive.py for a mostly working example of the proposed API. 📈 🐶 ❤️

Kyle Verhoog 2 Nov 21, 2021
Apache Superset is a Data Visualization and Data Exploration Platform

Superset A modern, enterprise-ready business intelligence web application. Why Superset? | Supported Databases | Installation and Configuration | Rele

The Apache Software Foundation 50k Jan 06, 2023
Schema validation for Xarray objects

xarray-schema Schema validation for Xarray installation This package is in the early stages of development. Install it from source: pip install git+gi

carbonplan 22 Oct 31, 2022
Matplotlib colormaps from the yt project !

cmyt Matplotlib colormaps from the yt project ! Colormaps overview The following colormaps, as well as their respective reversed (*_r) versions are av

The yt project 5 Sep 16, 2022