AB-test-analyzer - Python class to perform AB test analysis

Overview

AB-test-analyzer

Python class to perform AB test analysis

Overview

This repo contains a Python class to perform an A/B/C… test analysis with proportion-based metrics (including posthoc test). In practice, the class can be used along with any appropriate RDBMS retrieval tool (e.g. google.cloud.bigquery module for BigQuery) so that, together, they result in an end-to-end analysis process, i.e. from querying the experiment data stored originally in SQL to arriving at the complete analysis results.

The ABTest Class

The class is named ABTest. It is written on top of several well-known libraries (numpy, pandas, scipy, and statsmodels). The class' main functionality is to consume an experiment results data frame (experiment_df), metric information (nominator_metric, denominator_metric), and meta-information about the platform being experimented (platform) to perform two layers of statistical tests.

First, it will perform a Chi-square test on the aggregate data level. If this test is significant, the function will continue to perform a posthoc test that consists of testing each pair of experimental groups to report their adjusted p-values, as well as their absolute lift (difference) confidence intervals. Moreover, the class also has a method to calculate the statistical power of the experiment.

Class Init

To create an instance of ABTest class, we need to pass the following parameters--that also become the class instance attributes:

  1. experiment_df: pandas dataframe that contains the experiment data to be analyzed. The data contained must form a proportion based metric (nominator_metric/denominator_metric <= 1). More on this parameter can be found in a later section.
  2. nominator_metric: string representing the name of the nominator metric, one constituent of the proportion-based metric in experiment_df, e.g. "transaction"
  3. denominator_metric: string representing the name of the denominator metric, another constituent of the proportion-based metric in experiment_df, e.g. "visit"
  4. platform: string representing the platform represented by the experiment data, e.g. "android", "ios"

Methods

get_reporting_df

This function has one parameter called metric_level (string, default value is None) that specifies the metric level of the experiment data whose reporting dataframe is to be derived. Two common values for this parameter are "user" and "event".

Below is the output example from calling self.get_reporting_df(metric_level='user')

|    | experiment_group   | metric_level   |   targeted |   redeemed |   conversion |
|---:|:-------------------|:---------------|-----------:|-----------:|-------------:|
|  0 | control            | user           |       8333 |       1062 |     0.127445 |
|  1 | variant1           | user           |       8002 |        825 |     0.103099 |
|  2 | variant2           | user           |       8251 |       1289 |     0.156223 |
|  3 | variant3           | user           |       8275 |       1228 |     0.148399 |

posthoc_test

This function is the engine under the hood of the analyze method. It has three parameters:

  1. reporting_df: pandas dataframe, output of get_reporting_df method
  2. metric_level: string, the metric level of the experiment data whose reporting dataframe is to be derived
  3. alpha: float, the used alpha in the analysis

analyze

The main function to analyze the AB test. It has two parameters:

  1. metric_level: string, the metric level of the experiment data whose reporting dataframe is to be derived (default value is None). Two common values for this parameter are "user" and "event"
  2. alpha: float, the used alpha in the analysis (default value is 0.05)

The output of this method is a pandas dataframe with the following columns:

  1. metric_level: optional, only if metric_level parameter is not None
  2. pair: the segment pair being individually tested using z-proportion test
  3. raw_p_value: the raw p-value from the individual z-proportion test
  4. adj_p_value: the adjusted p-value (using Benjamini-Hochberg method) from z-proportion tests. Note that significant result is marked with *
  5. mean_ci: the mean (center value) of the metrics delta confidence interval at 1-alpha
  6. lower_ci: the lower bound of the metrics delta confidence interval at 1-alpha
  7. upper_ci: the upper bound of the metrics delta confidence interval at 1-alpha

Sample output:

|    | metric_level   | pair                 |   raw_p_value | adj_p_value             |     mean_ci |    lower_ci |    upper_ci |
|---:|:---------------|:---------------------|--------------:|:------------------------|------------:|------------:|------------:|
|  0 | user           | control vs variant1  |   1.13731e-06 | 1.592240591875927e-06*  |  -0.0243459 |  -0.0341516 |  -0.0145402 |
|  1 | user           | control vs variant2  |   1.08192e-07 | 1.8933619380632198e-07* |   0.0287784 |   0.0181608 |   0.0393959 |
|  2 | user           | control vs variant3  |   9.00223e-05 | 0.00010502606726165857* |   0.0209537 |   0.0104664 |   0.031441  |
|  3 | user           | variant1 vs variant2 |   7.82096e-24 | 2.737334684573585e-23*  |   0.0531243 |   0.0427802 |   0.0634683 |
|  4 | user           | variant1 vs variant3 |   3.23786e-18 | 7.554997289146693e-18*  |   0.0452996 |   0.0350976 |   0.0555015 |
|  5 | user           | variant2 vs variant1 |   7.82096e-24 | 2.737334684573585e-23*  |  -0.0531243 |  -0.0634683 |  -0.0427802 |
|  6 | user           | variant2 vs variant3 |   0.161595    | 0.16159493454321772     | nan         | nan         | nan         |

calculate_power

This function calculates the experiment’s statistical power for the supplied experiment_df. It has three parameters:

  1. practical_lift: float, the metrics lift that perceived meaningful
  2. alpha: float, the used alpha in the analysis (default value is 0.05)
  3. metric_level: string, the metric level of the experiment data whose reporting dataframe is to be derived (default value is None). Two common values for this parameter are "user" and "event"

Sample output:

The experiment's statistical power is 0.2680540196528648

Data Format

This section is dedicated to explaining the details of the format of experiment_df , i.e. the main data supply for the ABTest class.
experiment_df must at least have three columns with the following names:

  1. experiment_group: self-explanatory
  2. denominator_metric: the name of the denominator metric, one constituent of the proportion-based metric in experiment_df, e.g. "visit"
  3. nominator_metric: the name of the nominator metric, one constituent of the proportion-based metric in experiment_df, e.g. "transaction"
  4. (optional) metric_level: the metric level of the data (usually either "user" or "event")

In practice, this dataframe is derived by querying SQL tables using an appropriate retrieval tool.

Sample experiment_df

|    | experiment_group   | metric_level   |   targeted |   redeemed |
|---:|:-------------------|:---------------|-----------:|-----------:|
|  0 | control            | user           |       8333 |       1062 |
|  1 | variant1           | user           |       8002 |        825 |
|  2 | variant2           | user           |       8251 |       1289 |
|  3 | variant3           | user           |       8275 |       1228 |

Usage Guideline

The general steps:

  1. Prepare experiment_df (via anything you’d prefer)
  2. Create an ABTest class instance
  3. To get reporting dataframe, call get_reporting_df method
  4. To analyze end-to-end, call analyze method
  5. To calculate experiment’s statistical power, call calculate_power method

See the sample usage notebook for more details.

Statistics and Visualization of acceptance rate, main keyword of CVPR 2021 accepted papers for the main Computer Vision conference (CVPR)

Statistics and Visualization of acceptance rate, main keyword of CVPR 2021 accepted papers for the main Computer Vision conference (CVPR)

Hoseong Lee 78 Aug 23, 2022
Graphical display tools, to help students debug their class implementations in the Carcassonne family of projects

carcassonne_tools Graphical display tools, to help students debug their class implementations in the Carcassonne family of projects NOTE NOTE NOTE The

1 Nov 08, 2021
A curated list of awesome Dash (plotly) resources

Awesome Dash A curated list of awesome Dash (plotly) resources Dash is a productive Python framework for building web applications. Written on top of

Luke Singham 1.7k Jan 07, 2023
script to generate HeN ipfs app exports of GLSL shaders

HeNerator A simple script to generate HeN ipfs app exports from any frag shader created with: GlslViewer GlslEditor The Book of Shaders glslCanvas VS

Patricio Gonzalez Vivo 22 Dec 21, 2022
This tool is designed to help administrators get an overview of their Active Directory structure.

This tool is designed to help administrators get an overview of their Active Directory structure. In the group view you can see all elements of an AD (OU, USER, GROUPS, COMPUTERS etc.). In the user v

deexno 2 Oct 30, 2022
A streamlit component for bi-directional communication with bokeh plots.

Streamlit Bokeh Events A streamlit component for bi-directional communication with bokeh plots. Its just a workaround till streamlit team releases sup

Ashish Shukla 123 Dec 25, 2022
Customizing Visual Styles in Plotly

Customizing Visual Styles in Plotly Code for a workshop originally developed for an Unconference session during the Outlier Conference hosted by Data

Data Design Dimension 9 Aug 03, 2022
Visual Python is a GUI-based Python code generator, developed on the Jupyter Notebook environment as an extension.

Visual Python is a GUI-based Python code generator, developed on the Jupyter Notebook environment as an extension.

Visual Python 564 Jan 03, 2023
A simple, fast, extensible python library for data validation.

Validr A simple, fast, extensible python library for data validation. Simple and readable schema 10X faster than jsonschema, 40X faster than schematic

kk 209 Sep 19, 2022
A small tool to test and visualize protein embeddings and amino acid proportions.

polyprotein_stats A small tool to test and visualize protein embeddings and amino acid proportions. Currently deployed on streamlit.io. Given a set of

2 Jan 07, 2023
Python library that makes it easy for data scientists to create charts.

Chartify Chartify is a Python library that makes it easy for data scientists to create charts. Why use Chartify? Consistent input data format: Spend l

Spotify 3.2k Jan 01, 2023
Dipto Chakrabarty 7 Sep 06, 2022
GUI for visualization and interactive editing of SMPL-family body models ie. SMPL, SMPL-X, MANO, FLAME.

Body Model Visualizer Introduction This is a simple Open3D-based GUI for SMPL-family body models. This GUI lets you play with the shape, expression, a

Muhammed Kocabas 207 Jan 01, 2023
An open-source tool for visual and modular block programing in python

PyFlow PyFlow is an open-source tool for modular visual programing in python ! Although for now the tool is in Beta and features are coming in bit by

1.1k Jan 06, 2023
Seismic Waveform Inversion Toolbox-1.0

Seismic Waveform Inversion Toolbox (SWIT-1.0)

Haipeng Li 98 Dec 29, 2022
Visualizations of linear algebra algorithms for people who want a deep understanding

Visualising algorithms on symmetric matrices Examples QR algorithm and LR algorithm Here, we have a GIF animation of an interactive visualisation of t

ogogmad 3 May 05, 2022
This is simply repo for line drawing rendering using freestyle in Blender.

blender_freestyle_line_drawing This is simply repo for line drawing rendering using freestyle in Blender. how to use blender2935 --background --python

MaxLin 3 Jul 02, 2022
Gaphas is the diagramming widget library for Python.

Gaphas Gaphas is the diagramming widget library for Python. Gaphas is a library that provides the user interface component (widget) for drawing diagra

Gaphor 144 Dec 14, 2022
Designed a greedy algorithm based on Markov sequential decision-making process in MATLAB/Python to optimize using Gurobi solver

Designed a greedy algorithm based on Markov sequential decision-making process in MATLAB/Python to optimize using Gurobi solver, the wheel size, gear shifting sequence by modeling drivetrain constrai

Sabbella Prasanna 1 Jan 11, 2022
A guide for using Bootstrap 5 classes in Dash Bootstrap Components V1

dash-bootstrap-cheatsheet This handy interactive cheatsheet makes it easy to use the Bootstrap 5 classes with your Dash app made with the latest versi

10 Dec 22, 2022