A fast and easy implementation of Transformer with PyTorch.

Overview

FasySeq

FasySeq is a shorthand as a Fast and easy sequential modeling toolkit. It aims to provide a seq2seq model to researchers and developers, which can be trained efficiently and modified easily. This toolkit is based on Transformer(Vaswani et al.), and will add more seq2seq models in the future.

Dependency

PyTorch >= 1.4
NLTK

Result

...

Structure

...

To Be Updated

  • top-k and top-p sampling
  • multi-GPU inference
  • length penalty in beam search
  • ...

Preprocess

Build Vocabulary

createVocab.py

NamedArguments Description
-f/--file The files used to build the vocabulary.
Type: List
--vocab_num The maximum size of vocabulary, the excess word will be discard according to the frequency.
Type: Int Default: -1
--min_freq The minimum frequency of token in vocabulary. The word with frequency less than min_freq will be discard.
Type: Int Default: 0
--lower Whether to convert all words to lowercase
--save_path The path to save voacbulary.
Type: str

Process Data

preprocess.py

NamedArguments Description
--source The path of source file.
Type: str
[--target] The path of target file.
Type: str
--src_vocab The path of source vocabulary.
Type: str
[--tgt_vocab] The path of target vocabulary.
Type: str
--save_path The path to save the processed data.
Type: str

Train

train.py

NamedArguments Description
Model -
--share_embed Source and target share the same vocabulary and word embedding. The max position of embedding is max(max_src_position, max_tgt_position) if the model employ share embedding.
--max_src_position The maximum source position, all src-tgt pairs which source sentences' lenght are greater than max_src_position will be cut or discard. If max_src_position > max source length, it wil be set to max source length.
Type: Int Default: inf
--max_tgt_position The maximum target position, all src_tgt pairs which target sentences' length are greater than max_tgt_position will be cut or discard. If max_tgt_position > max target length, it wil be set to max target length.
Type: Int Default: inf
--position_method The method to introduce positional information.
Option: encoding/embedding
--normalize_before Leveraging before layer normalization. See Xiong et al.
Checkpoint -
--checkpoint_path The path to save checkpoint file.
Type: str Default: None
--restore_file The checkpoint file to be loaded.
Type: str Default: None
--checkpoint_num Save the nearest checkpoint_num breakpoint.
Type: Int Default: inf
Data -
--vocab Vocabulary path. If you use share embedding, the vocabulary will be loaded from this path.
Type: str Default: None
--src_vocab Source vocabulary path.
Type: str Default: None
--tgt_vocab Target vocabulary path.
Type: str Default: None
--file The training data file.
Type: str
--max_tokens The maximum tokens in each batch.
Type: Int Default: 1000
--discard_invalid_data The data which length of source or data is more than maximum position will be discard if use this option, otherwise the long sentences will be cut into max position.
Train -
--cuda_num The device's ID of GPU.
Type: List
--grad_accumulate The num of gradient accumulate.
Type: Int Default: 1
--epoch The total epoch to train.
Type: Int Default: inf
--batch_print_info The number of batch to print training information.
Type: Int Default: 1000

Inference

generator.py

NamedArguments Description
--cuda_num The device's ID of GPU.
Type: List
--file The inference data file which has been processed.
Type: str
--raw_file The raw inference data file, and will be preprocessed before generated.
Type: str
--ref_file The reference file.
Type: str
--max_length
--max_alpha
--max_add_token
Maximum generated length = min(max_length, max_alpha * max_src_len, max_add_token + max_src_token)
Type: Int Default: inf
--max_tokens The maximum tokens in each batch.
Type: Int Default: 1000
--src_vocab Source vocabulary path.
Type: str Default: None
--tgt_vocab Target vocabulary path.
Type: str Default: None
--vocab Vocabulary path. If you use share embedding, the vocabulary will be loaded from this path.
Type: str Default: None
--model_path The path of pre-trained model.
Type: str
--output_path The path of output. the result will be saved into output_path/result.txt.
Type: str
--decode_method The decode method.
Option:greedy/beam
--beam Beam size.
Type: Int Default: 5

Postpreposs

avg_param.py

The average parameter code we employed is the same as fairseq.

License

FasySeq(-py) is Apache-2.0 License. The license applies to the pre-trained models as well.

You might also like...
Fast, general, and tested differentiable structured prediction in PyTorch
Fast, general, and tested differentiable structured prediction in PyTorch

Torch-Struct: Structured Prediction Library A library of tested, GPU implementations of core structured prediction algorithms for deep learning applic

A Word Level Transformer layer based on PyTorch and 🤗 Transformers.

Transformer Embedder A Word Level Transformer layer based on PyTorch and 🤗 Transformers. How to use Install the library from PyPI: pip install transf

Reformer, the efficient Transformer, in Pytorch
Reformer, the efficient Transformer, in Pytorch

Reformer, the Efficient Transformer, in Pytorch This is a Pytorch implementation of Reformer https://openreview.net/pdf?id=rkgNKkHtvB It includes LSH

An implementation of WaveNet with fast generation

pytorch-wavenet This is an implementation of the WaveNet architecture, as described in the original paper. Features Automatic creation of a dataset (t

Google's Meena transformer chatbot implementation
Google's Meena transformer chatbot implementation

Here's my attempt at recreating Meena, a state of the art chatbot developed by Google Research and described in the paper Towards a Human-like Open-Domain Chatbot.

Free and Open Source Machine Translation API. 100% self-hosted, offline capable and easy to setup.
Free and Open Source Machine Translation API. 100% self-hosted, offline capable and easy to setup.

LibreTranslate Try it online! | API Docs | Community Forum Free and Open Source Machine Translation API, entirely self-hosted. Unlike other APIs, it d

An easy to use, user-friendly and efficient code for extracting OpenAI CLIP (Global/Grid) features from image and text respectively.

Extracting OpenAI CLIP (Global/Grid) Features from Image and Text This repo aims at providing an easy to use and efficient code for extracting image &

xFormers is a modular and field agnostic library to flexibly generate transformer architectures by interoperable and optimized building blocks.
xFormers is a modular and field agnostic library to flexibly generate transformer architectures by interoperable and optimized building blocks.

Description xFormers is a modular and field agnostic library to flexibly generate transformer architectures by interoperable and optimized building bl

Owner
宁羽
宁羽
Sample data associated with the Aurora-BP study

The Aurora-BP Study and Dataset This repository contains sample code, sample data, and explanatory information for working with the Aurora-BP dataset

Microsoft 16 Dec 12, 2022
LSTM based Sentiment Classification using Tensorflow - Amazon Reviews Rating

LSTM based Sentiment Classification using Tensorflow - Amazon Reviews Rating (Dataset) The dataset is from Amazon Review Data (2018)

Immanuvel Prathap S 1 Jan 16, 2022
PortaSpeech - PyTorch Implementation

PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor

Keon Lee 276 Dec 26, 2022
Fixes mojibake and other glitches in Unicode text, after the fact.

ftfy: fixes text for you print(fix_encoding("(ง'⌣')ง")) (ง'⌣')ง Full documentation: https://ftfy.readthedocs.org Testimonials “My life is li

Luminoso Technologies, Inc. 3.4k Dec 29, 2022
Neural network sequence labeling model

Sequence labeler This is a neural network sequence labeling system. Given a sequence of tokens, it will learn to assign labels to each token. Can be u

Marek Rei 250 Nov 03, 2022
profile tools for pytorch nn models

nnprof Introduction nnprof is a profile tool for pytorch neural networks. Features multi profile mode: nnprof support 4 profile mode: Layer level, Ope

Feng Wang 42 Jul 09, 2022
Uncomplete archive of files from the European Nopsled Team

European Nopsled CTF Archive This is an archive of collected material from various Capture the Flag competitions that the European Nopsled team played

European Nopsled 4 Nov 24, 2021
This project uses word frequency and Term Frequency-Inverse Document Frequency to summarize a text.

Text Summarizer This project uses word frequency and Term Frequency-Inverse Document Frequency to summarize a text. Team Members This mini-project was

1 Nov 16, 2021
Two-stage text summarization with BERT and BART

Two-Stage Text Summarization Description We experiment with a 2-stage summarization model on CNN/DailyMail dataset that combines the ability to filter

Yukai Yang (Alexis) 6 Oct 22, 2022
jiant is an NLP toolkit

🚨 Update 🚨 : As of 2021/10/17, the jiant project is no longer being actively maintained. This means there will be no plans to add new models, tasks,

ML² AT CILVR 1.5k Dec 28, 2022
Translate U is capable of translating the text present in an image from one language to the other.

Translate U is capable of translating the text present in an image from one language to the other. The app uses OCR and Google translate to identify and translate across 80+ languages.

Neelanjan Manna 1 Dec 22, 2021
硕士期间自学的NLP子任务,供学习参考

NLP_Chinese_down_stream_task 自学的NLP子任务,供学习参考 任务1 :短文本分类 (1).数据集:THUCNews中文文本数据集(10分类) (2).模型:BERT+FC/LSTM,Pytorch实现 (3).使用方法: 预训练模型使用的是中文BERT-WWM, 下载地

12 May 31, 2022
AllenNLP integration for Shiba: Japanese CANINE model

Allennlp Integration for Shiba allennlp-shiab-model is a Python library that provides AllenNLP integration for shiba-model. SHIBA is an approximate re

Shunsuke KITADA 12 Feb 16, 2022
Automatic privilege escalation for misconfigured capabilities, sudo and suid binaries

GTFONow Automatic privilege escalation for misconfigured capabilities, sudo and suid binaries. Features Automatically escalate privileges using miscon

101 Jan 03, 2023
Trankit is a Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing

Trankit: A Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing Trankit is a light-weight Transformer-based Pyth

652 Jan 06, 2023
A tool helps build a talk preview image by combining the given background image and talk event description

talk-preview-img-builder A tool helps build a talk preview image by combining the given background image and talk event description Installation and U

PyCon Taiwan 4 Aug 20, 2022
Spokestack is a library that allows a user to easily incorporate a voice interface into any Python application with a focus on embedded systems.

Welcome to Spokestack Python! This library is intended for developing voice interfaces in Python. This can include anything from Raspberry Pi applicat

Spokestack 133 Sep 20, 2022
DLO8012: Natural Language Processing & CSL804: Computational Lab - II

NATURAL-LANGUAGE-PROCESSING-AND-COMPUTATIONAL-LAB-II DLO8012: NLP & CSL804: CL-II [SEMESTER VIII] Syllabus NLP - Reference Books THE WALL MEGA SATISH

AMEY THAKUR 7 Apr 28, 2022
Contract Understanding Atticus Dataset

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022
Text Classification Using LSTM

Text classification is the task of assigning a set of predefined categories to free text. Text classifiers can be used to organize, structure, and categorize pretty much anything. For example, new ar

KrishArul26 3 Jan 03, 2023