A tool helps build a talk preview image by combining the given background image and talk event description

Overview

talk-preview-img-builder

A tool helps build a talk preview image by combining the given background image and talk event description

Installation and Usage

Install Dependencies

For running the app, you need to install the following dependencies by following command:

pipenv install -d

Run the Application

Before running the application, you need to prepare the material for building the talk preview images/slides. There are two materials that are required:

  • A background image named background.png which is located in the materials/img folder.

  • A talk event description named speeches.json which is located in the materials/ folder.

After preparing the material, you can run the application by following command:

pipenv run build_talk_preview_img   # build the talk preview images

or

pipenv run build_talk_preview_ppt  # build the talk preview slides

The generated talk preview images and slides are located in the export/ folder.

Configuring the Application

There are several options to configure the application, the default values are shown in the config.py file. You can override the default values by editing the config.py file or adding a .env file that setting theses variables before running the app.

Variable Description Default Value (Setting for Image/ Setting for Slides) Type (Setting for Image/ Setting for Slides)
BACKGROUND_IMG_PATH The path to the background image materials/img/background.png String
SPEECHES_PATH The path to the speech description materials/speeches.json String
PREVIEW_IMG_WIDTH The width of the generated preview image 700px / 30cm Integer / Float
PREVIEW_IMG_HEIGHT The height of the generated preview image 700px / 30cm Integer / Float
PREVIEW_IMG_TITLE_UPPER_LEFT_X The left position of the title in the upper left corner of the generated preview image 110px / 0.95cm Integer / Float
PREVIEW_IMG_TITLE_UPPER_LEFT_Y The top position of the title in the upper left corner of the generated preview image 110px / 1.04cm Integer / Float
PREVIEW_IMG_CONTENT_UPPER_LEFT_X The left position of the content in the upper left corner of the generated preview image 85px / 1.38cm Integer / Float
PREVIEW_IMG_CONTENT_UPPER_LEFT_Y The top position of the content in the upper left corner of the generated preview image 200px / 3.8cm Integer / Float
PREVIEW_IMG_FOOTER_UPPER_LEFT_X The left position of the footer in the upper left corner of the generated preview image 100px / 1.6cm Integer / Float
PREVIEW_IMG_FOOTER_UPPER_LEFT_Y The top position of the footer in the upper left corner of the generated preview image 650px / 12.2cm Integer / Float
PREVIEW_IMG_SPEAKER_UPPER_RIGHT_X The right position of the speaker name in the upper right corner of the generated preview image 600px / 13.5cm Integer / Float
PREVIEW_IMG_SPEAKER_UPPER_RIGHT_Y The top position of the speaker name in the upper right corner of the generated preview image 570px / 10cm Integer / Float
TITLE_HEIGHT The height of the title 70px / 1.84cm Integer / Float
CONTENT_HEIGHT The height of the content 90px / 7.5cm Integer / Float
PREVIEW_TEXT_COLOR The color of text used in the preview image #080A42 String
PREVIEW_HIGHTLIGHT_TEXT_COLOR The highlight color of text used in the preview image #EBCC73 String
PREVIEW_TEXT_FONT The font used in the preview image "PingFang.ttc"/"Taipei Sans TC Beta" String
PREVIEW_TEXT_BOLD_FONT The bold font used in the preview image "PingFang.ttc"/"Taipei Sans TC Beta" String

Coding Style

The coding style of the application is PEP8. You can use the following command to check the coding style:

pipenv run lint

and the following command to reformat the coding style which is leveraged by black and isort:

pipenv run reformat

TODO

  • Automatically generate the talk preview metadata file (e.g. speeches.json) from the PyConTW API server.
  • Implement hybrid language support text wrapping in title and content of the talk preview image.
  • Implement dynamic font size adjustment in the title and content of the talk preview image depending on the length of words.
  • Implement CI workflow by using GitHub Actions
Owner
PyCon Taiwan
PyCon Taiwan
This is a project built for FALLABOUT2021 event under SRMMIC, This project deals with NLP poetry generation.

FALLABOUT-SRMMIC 21 POETRY-GENERATION HINGLISH DESCRIPTION We have developed a NLP(natural language processing) model which automatically generates a

7 Sep 28, 2021
TweebankNLP - Pre-trained Tweet NLP Pipeline (NER, tokenization, lemmatization, POS tagging, dependency parsing) + Models + Tweebank-NER

TweebankNLP This repo contains the new Tweebank-NER dataset and off-the-shelf Twitter-Stanza pipeline for state-of-the-art Tweet NLP, as described in

Laboratory for Social Machines 84 Dec 20, 2022
An easier way to build neural search on the cloud

An easier way to build neural search on the cloud Jina is a deep learning-powered search framework for building cross-/multi-modal search systems (e.g

Jina AI 17.1k Jan 09, 2023
Linking data between GBIF, Biodiverse, and Open Tree of Life

GBIF-biodiverse-OpenTree Linking data between GBIF, Biodiverse, and Open Tree of Life The python scripts will rely on opentree and Dendropy. To set up

2 Oct 03, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

537 Jan 05, 2023
NLP codes implemented with Pytorch (w/o library such as huggingface)

NLP_scratch NLP codes implemented with Pytorch (w/o library such as huggingface) scripts ├── models: Neural Network models ├── data: codes for dataloa

3 Dec 28, 2021
Chatbot with Pytorch, Python & Nextjs

Installation Instructions Make sure that you have Python 3, gcc, venv, and pip installed. Clone the repository $ git clone https://github.com/sahr

Rohit Sah 0 Dec 11, 2022
BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model

BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model

303 Dec 17, 2022
Prithivida 690 Jan 04, 2023
Repository of the Code to Chatbots, developed in Python

Description In this repository you will find the Code to my Chatbots, developed in Python. I'll explain the structure of this Repository later. Requir

Li-am K. 0 Oct 25, 2022
Cải thiện Elasticsearch trong bài toán semantic search sử dụng phương pháp Sentence Embeddings

Cải thiện Elasticsearch trong bài toán semantic search sử dụng phương pháp Sentence Embeddings Trong bài viết này mình sẽ sử dụng pretrain model SimCS

Vo Van Phuc 18 Nov 25, 2022
An Analysis Toolkit for Natural Language Generation (Translation, Captioning, Summarization, etc.)

VizSeq is a Python toolkit for visual analysis on text generation tasks like machine translation, summarization, image captioning, speech translation

Facebook Research 409 Oct 28, 2022
CCF BDCI BERT系统调优赛题baseline(Pytorch版本)

CCF BDCI BERT系统调优赛题baseline(Pytorch版本) 此版本基于Pytorch后端的huggingface进行实现。由于此实现使用了Oneflow的dataloader作为数据读入的方式,因此也需要安装Oneflow。其它框架的数据读取可以参考OneflowDataloade

Ziqi Zhou 9 Oct 13, 2022
Training RNNs as Fast as CNNs

News SRU++, a new SRU variant, is released. [tech report] [blog] The experimental code and SRU++ implementation are available on the dev branch which

Tao Lei 14 Dec 12, 2022
Implementation of Memorizing Transformers (ICLR 2022), attention net augmented with indexing and retrieval of memories using approximate nearest neighbors, in Pytorch

Memorizing Transformers - Pytorch Implementation of Memorizing Transformers (ICLR 2022), attention net augmented with indexing and retrieval of memori

Phil Wang 364 Jan 06, 2023
The following links explain a bit the idea of semantic search and how search mechanisms work by doing retrieve and rerank

Main Idea The following links explain a bit the idea of semantic search and how search mechanisms work by doing retrieve and rerank Semantic Search Re

Sergio Arnaud Gomez 2 Jan 28, 2022
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Highlights The strongest performances Tracker

Multimedia Research 485 Jan 04, 2023
Translates basic English sentences into the Huna language (hoo-NAH)

huna-translator The Huna Language Translates basic English sentences into the Huna language (hoo-NAH). The Huna constructed language was developed in

Miles Smith 0 Jan 20, 2022
A raytrace framework using taichi language

ti-raytrace The code use Taichi programming language Current implement acceleration lvbh disney brdf How to run First config your anaconda workspace,

蕉太狼 73 Dec 11, 2022
SpikeX - SpaCy Pipes for Knowledge Extraction

SpikeX is a collection of pipes ready to be plugged in a spaCy pipeline. It aims to help in building knowledge extraction tools with almost-zero effort.

Erre Quadro Srl 384 Dec 12, 2022