City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Code

Overview

City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones

Requirements

Python 3.8 or later with all requirements.txt dependencies installed, including torch>=1.7. To install run:

$ pip install -r requirements.txt

Data Preparation

If you want to reproduce our results on AI City Challengef, please download the datasets from: (https://www.aicitychallenge.org/) and put it under the folder datasets. Make sure the data structure is like:

AIC21-MTMC

  • datasets
    • AIC21_Track3_MTMC_Tracking
      • unzip AIC21_Track3_MTMC_Tracking.zip
    • detect_provided (Including detection and corresponding Re-ID features)
  • detector
    • yolov5
  • reid
    • reid_model (Pre-trained reid model on Track 2)
      • resnet101_ibn_a_2.pth
      • resnet101_ibn_a_3.pth
      • resnext101_ibn_a_2.pth

Reproduce frome detect_provided

If you just want reproduce our results, you can directly download detect_provided:

cd AIC21-MTMC
mkdir datasets
cd datasets

Then put detect_provided folder under this folder and modify yml config/aic_mcmt.yml:

CHALLENGE_DATA_DIR: '/home/xxx/AIC21-MTMC/datasets/AIC21_Track3_MTMC_Tracking/'
DET_SOURCE_DIR: '/home/xxx/AIC21-MTMC/datasets/detection/images/test/S06/'
DATA_DIR: '/home/xxx/AIC21-MTMC/datasets/detect_provided'
REID_SIZE_TEST: [384, 384]
ROI_DIR: '/home/xxx/AIC21-MTMC/datasets/AIC21_Track3_MTMC_Tracking/test/S06/'
CID_BIAS_DIR: '/home/xxx/AIC21-MTMC/datasets/AIC21_Track3_MTMC_Tracking/cam_timestamp/'
USE_RERANK: True
USE_FF: True
SCORE_THR: 0.1
MCMT_OUTPUT_TXT: 'track3.txt'

Then run:

bash ./run_mcmt.sh

The final results will locate at path ./reid/reid-matching/tools/track3.txt

Reproduce on all pipeline

If you just want reproduce our results on all pipeline, you have to download:

detector/yolov5/yolov5x.pt
reid/reid_model/resnet101_ibn_a_2.pth
reid/reid_model/resnet101_ibn_a_3.pth
reid/reid_model/resnext101_ibn_a_2.pth

You can refer to Track2 to retrain the reid model.

Then modify yml:

config/aic_all.yml
config/aic_reid1.yml
config/aic_reid2.yml
config/aic_reid3.yml

Then run:

bash ./run_all.sh

The final results will locate at path ./reid/reid-matching/tools/track3.txt

A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.

Object Pose Estimation Demo This tutorial will go through the steps necessary to perform pose estimation with a UR3 robotic arm in Unity. You’ll gain

Unity Technologies 187 Dec 24, 2022
REGTR: End-to-end Point Cloud Correspondences with Transformers

REGTR: End-to-end Point Cloud Correspondences with Transformers This repository contains the source code for REGTR. REGTR utilizes multiple transforme

Zi Jian Yew 108 Dec 17, 2022
Official PyTorch implementation of the paper Image-Based CLIP-Guided Essence Transfer.

TargetCLIP- official pytorch implementation of the paper Image-Based CLIP-Guided Essence Transfer This repository finds a global direction in StyleGAN

Hila Chefer 221 Dec 13, 2022
MNIST, but with Bezier curves instead of pixels

bezier-mnist This is a work-in-progress vector version of the MNIST dataset. Samples Here are some samples from the training set. Note that, while the

Alex Nichol 15 Jan 16, 2022
4th place solution for the SIGIR 2021 challenge.

SIGIR-2021 (Tinkoff.AI) How to start Download train and test data: https://sigir-ecom.github.io/data-task.html Place it under sigir-2021/data/. Run py

Tinkoff.AI 4 Jul 01, 2022
A cool little repl-based simulation written in Python

A cool little repl-based simulation written in Python planned to integrate machine-learning into itself to have AI battle to the death before your eye

Em 6 Sep 17, 2022
Exploring Cross-Image Pixel Contrast for Semantic Segmentation

Exploring Cross-Image Pixel Contrast for Semantic Segmentation Exploring Cross-Image Pixel Contrast for Semantic Segmentation, Wenguan Wang, Tianfei Z

Tianfei Zhou 510 Jan 02, 2023
A Light in the Dark: Deep Learning Practices for Industrial Computer Vision

A Light in the Dark: Deep Learning Practices for Industrial Computer Vision This is the repository for our Paper/Contribution to the WI2022 in Nürnber

Maximilian Harl 6 Jan 17, 2022
Face recognize system

FRS Face_recognize_system This project contains my work that target on solving some problems of FRS: Face detection: Retinaface Face anti-spoofing: Fo

Tran Anh Tuan 4 Nov 18, 2021
Cycle Consistent Adversarial Domain Adaptation (CyCADA)

Cycle Consistent Adversarial Domain Adaptation (CyCADA) A pytorch implementation of CyCADA. If you use this code in your research please consider citi

Hyunwoo Ko 2 Jan 10, 2022
Cross-modal Deep Face Normals with Deactivable Skip Connections

Cross-modal Deep Face Normals with Deactivable Skip Connections Victoria Fernández Abrevaya*, Adnane Boukhayma*, Philip H. S. Torr, Edmond Boyer (*Equ

72 Nov 27, 2022
Code for ICLR2018 paper: Improving GAN Training via Binarized Representation Entropy (BRE) Regularization - Y. Cao · W Ding · Y.C. Lui · R. Huang

code for "Improving GAN Training via Binarized Representation Entropy (BRE) Regularization" (ICLR2018 paper) paper: https://arxiv.org/abs/1805.03644 G

21 Oct 12, 2020
22 Oct 14, 2022
Hummingbird compiles trained ML models into tensor computation for faster inference.

Hummingbird Introduction Hummingbird is a library for compiling trained traditional ML models into tensor computations. Hummingbird allows users to se

Microsoft 3.1k Dec 30, 2022
PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.

VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n

Meta Archive 873 Dec 15, 2022
Manifold Alignment for Semantically Aligned Style Transfer

Manifold Alignment for Semantically Aligned Style Transfer [Paper] Getting Started MAST has been tested on CentOS 7.6 with python = 3.6. It supports

35 Nov 14, 2022
Pixel Consensus Voting for Panoptic Segmentation (CVPR 2020)

Implementation for Pixel Consensus Voting (CVPR 2020). This codebase contains the essential ingredients of PCV, including various spatial discretizati

Haochen 23 Oct 25, 2022
A general-purpose encoder-decoder framework for Tensorflow

READ THE DOCUMENTATION CONTRIBUTING A general-purpose encoder-decoder framework for Tensorflow that can be used for Machine Translation, Text Summariz

Google 5.5k Jan 07, 2023
The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization".

Kernelized-HRM Jiashuo Liu, Zheyuan Hu The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization"[1]. This repo contains the cod

Liu Jiashuo 8 Nov 20, 2022
BuildingNet: Learning to Label 3D Buildings

BuildingNet This is the implementation of the BuildingNet architecture described in this paper: Paper: BuildingNet: Learning to Label 3D Buildings Arx

16 Nov 07, 2022