Indices Matter: Learning to Index for Deep Image Matting

Overview

IndexNet Matting

This repository includes the official implementation of IndexNet Matting for deep image matting, presented in our paper:

Indices Matter: Learning to Index for Deep Image Matting

Proc. IEEE/CVF International Conference on Computer Vision (ICCV), 2019

Hao Lu1, Yutong Dai1, Chunhua Shen1, Songcen Xu2

1The University of Adelaide, Australia

2Noah's Ark Lab, Huawei Technologies

Updates

  • 8 June 2020: The journal version of this work has been accepted to TPAMI! We further report many interesting results on other dense prediction tasks and extend our insights on generic upsampling operators.
  • 4 April 2020: Training code is released!
  • 16 Aug 2019: The supplementary material is finalized and released!
  • 5 Aug 2019: Inference code of IndexNet Matting is released!

Highlights

  • Simple and effective: IndexNet Matting only deals with the upsampling stage but exhibits at least 16.1% relative improvements, compared to the Deep Matting baseline;
  • Memory-efficient: IndexNet Matting builds upon MobileNetV2. It can process an image with a resolution up to 1980x1080 on a single GTX 1070;
  • Easy to use: This framework also includes our re-implementation of Deep Matting and the pretrained model presented in the Adobe's CVPR17 paper.

Installation

Our code has been tested on Python 3.6.8/3.7.2 and PyTorch 0.4.1/1.1.0. Please follow the official instructions to configure your environment. See other required packages in requirements.txt.

A Quick Demo

We have included our pretrained model in ./pretrained and several images and trimaps from the Adobe Image Dataset in ./examples. Run the following command for a quick demonstration of IndexNet Matting. The inferred alpha mattes are in the folder ./examples/mattes.

python scripts/demo.py

Prepare Your Data

  1. Please contact Brian Price ([email protected]) requesting for the Adobe Image Matting dataset;
  2. Composite the dataset using provided foreground images, alpha mattes, and background images from the COCO and Pascal VOC datasets. I slightly modified the provided compositon_code.py to improve the efficiency, included in the scripts folder. Note that, since the image resolution is quite high, the dataset will be over 100 GB after composition.
  3. The final path structure used in my code looks like this:
$PATH_TO_DATASET/Combined_Dataset
├──── Training_set
│    ├──── alpha (431 images)
│    ├──── fg (431 images)
│    └──── merged (43100 images)
├──── Test_set
│    ├──── alpha (50 images)
│    ├──── fg (50 images)
│    ├──── merged (1000 images)
│    └──── trimaps (1000 images)

Inference

Run the following command to do inference of IndexNet Matting/Deep Matting on the Adobe Image Matting dataset:

python scripts/demo_indexnet_matting.py

python scripts/demo_deep_matting.py

Please note that:

  • DATA_DIR should be modified to your dataset directory;
  • Images used in Deep Matting has been downsampled by 1/2 to enable the GPU inference. To reproduce the full-resolution results, the inference can be executed on CPU, which takes about 2 days.

Here is the results of IndexNet Matting and our reproduced results of Deep Matting on the Adobe Image Dataset:

Methods Remark #Param. GFLOPs SAD MSE Grad Conn Model
Deep Matting Paper -- -- 54.6 0.017 36.7 55.3 --
Deep Matting Re-implementation 130.55M 32.34 55.8 0.018 34.6 56.8 Google Drive (522MB)
IndexNet Matting Ours 8.15M 6.30 45.8 0.013 25.9 43.7 Included
  • The original paper reported that there were 491 images, but the released dataset only includes 431 images. Among missing images, 38 of them were said double counted, and the other 24 of them were not released. As a result, we at least use 4.87% fewer training data than the original paper. Thus, the small differerce in performance should be normal.
  • The evaluation code (Matlab code implemented by the Deep Image Matting's author) placed in the ./evaluation_code folder is used to report the final performance for a fair comparion. We have also implemented a python version. The numerial difference is subtle.

Training

Run the following command to train IndexNet Matting:

sh train.sh
  • --data-dir should be modified to your dataset directory.
  • I was able to train the model on a single GTX 1080ti (12 GB). The training takes about 5 days. The current bottleneck appears to be the dataloader.

Citation

If you find this work or code useful for your research, please cite:

@inproceedings{hao2019indexnet,
  title={Indices Matter: Learning to Index for Deep Image Matting},
  author={Lu, Hao and Dai, Yutong and Shen, Chunhua and Xu, Songcen},
  booktitle={Proc. IEEE/CVF International Conference on Computer Vision (ICCV)},
  year={2019}
}

@article{hao2020indexnet,
  title={Index Networks},
  author={Lu, Hao and Dai, Yutong and Shen, Chunhua and Xu, Songcen},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2020}
}

Permission and Disclaimer

This code is only for non-commercial purposes. As covered by the ADOBE IMAGE DATASET LICENSE AGREEMENT, the trained models included in this repository can only be used/distributed for non-commercial purposes. Anyone who violates this rule will be at his/her own risk.

Owner
Hao Lu
I am currently an Associate Professor with Huazhong University of Science and Technology, China.
Hao Lu
OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021)

OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021) Video demo We here provide a video demo from co

20 Nov 25, 2022
Code for Learning to Segment The Tail (LST)

Learning to Segment the Tail [arXiv] In this repository, we release code for Learning to Segment The Tail (LST). The code is directly modified from th

47 Nov 07, 2022
FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction

FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction. It uses a customized encoder decoder architecture with spatio-temporal convolutions and channel ga

Tarun K 280 Dec 23, 2022
Unsupervised Representation Learning by Invariance Propagation

Unsupervised Learning by Invariance Propagation This repository is the official implementation of Unsupervised Learning by Invariance Propagation. Pre

FengWang 15 Jul 06, 2022
PyTorch code for: Learning to Generate Grounded Visual Captions without Localization Supervision

Learning to Generate Grounded Visual Captions without Localization Supervision This is the PyTorch implementation of our paper: Learning to Generate G

Chih-Yao Ma 41 Nov 17, 2022
Course content and resources for the AIAIART course.

AIAIART course This repo will house the notebooks used for the AIAIART course. Part 1 (first four lessons) ran via Discord in September/October 2021.

Jonathan Whitaker 492 Jan 06, 2023
Datasets, Transforms and Models specific to Computer Vision

vision Datasets, Transforms and Models specific to Computer Vision Installation First install the nightly version of OneFlow python3 -m pip install on

OneFlow 68 Dec 07, 2022
an implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch

This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I

Simon Niklaus 985 Jan 08, 2023
Run Effective Large Batch Contrastive Learning on Limited Memory GPU

Gradient Cache Gradient Cache is a simple technique for unlimitedly scaling contrastive learning batch far beyond GPU memory constraint. This means tr

Luyu Gao 198 Dec 29, 2022
Implementation of Ag-Grid component for Streamlit

streamlit-aggrid AgGrid is an awsome grid for web frontend. More information in https://www.ag-grid.com/. Consider purchasing a license from Ag-Grid i

Pablo Fonseca 556 Dec 31, 2022
Implements Gradient Centralization and allows it to use as a Python package in TensorFlow

Gradient Centralization TensorFlow This Python package implements Gradient Centralization in TensorFlow, a simple and effective optimization technique

Rishit Dagli 101 Nov 01, 2022
PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models

PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models This repository is the official implementation of the fol

DistributedML 41 Dec 06, 2022
A fuzzing framework for SMT solvers

yinyang A fuzzing framework for SMT solvers. Given a set of seed SMT formulas, yinyang generates mutant formulas to stress-test SMT solvers. yinyang c

Project Yin-Yang for SMT Solver Testing 145 Jan 04, 2023
⚡️Optimizing einsum functions in NumPy, Tensorflow, Dask, and more with contraction order optimization.

Optimized Einsum Optimized Einsum: A tensor contraction order optimizer Optimized einsum can significantly reduce the overall execution time of einsum

Daniel Smith 653 Dec 30, 2022
Pytorch Implementation of LNSNet for Superpixel Segmentation

LNSNet Overview Official implementation of Learning the Superpixel in a Non-iterative and Lifelong Manner (CVPR'21) Learning Strategy The proposed LNS

42 Oct 11, 2022
Implements an infinite sum of poisson-weighted convolutions

An infinite sum of Poisson-weighted convolutions Kyle Cranmer, Aug 2018 If viewing on GitHub, this looks better with nbviewer: click here Consider a v

Kyle Cranmer 26 Dec 07, 2022
Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

Hugging Face 34 Dec 10, 2022
Eff video representation - Efficient video representation through neural fields

Neural Residual Flow Fields for Efficient Video Representations 1. Download MPI

41 Jan 06, 2023
The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing".

BMC The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing". BibTex entry available here. B

Orange 383 Dec 16, 2022
Fast, modular reference implementation and easy training of Semantic Segmentation algorithms in PyTorch.

TorchSeg This project aims at providing a fast, modular reference implementation for semantic segmentation models using PyTorch. Highlights Modular De

ycszen 1.4k Jan 02, 2023