InDels analysis of CRISPR lines by NGS amplicon sequencing technology for a multicopy gene family.

Overview

CRISPRanalysis

InDels analysis of CRISPR lines by NGS amplicon sequencing technology for a multicopy gene family.

In this work, we present a workflow to analyze InDels from the multicopy α-gliadin gene family from wheat based on NGS data without the need to pre-viously establish a reference sequence for each genetic background. The pipeline was tested it in a multiple sample set, including three generations of edited wheat lines (T0, T1, and T2), from three different backgrounds and ploidy levels (hexaploid and tetraploid). Implementation of Bayesian optimization of Usearch parameters, inhouse Python, and bash scripts are reported.

Workflow:

Step1:

Bayesian optimization was implemented to optimize Usearch v9.2.64 parameters from merge to search steps for the α-gliadin amplicons on the wild type lines.

python Step1_Bayesian_usearch.py --database 
   
     --file_intervals 
    
      --trim_primers 
     
       --path_usearch_control 
      

      
     
    
   


Help:

Argument Help
--database File fasta with database sequences. Example: /path/to/database/database.fasta.
--file_intervals File with intervals for parameters. Example in /Examples/Example_intervals.txt.
--trim_primers Trim primers in reads if you use database without primers. Optios: YES | NO.
--path_usearch_control Path of usearch and control raw data separated by "," without white spaces. Example: /paht/to/usearch,/path/to/reads_control.


Outputs:

  • Bayesian_usearch.txt File with optimal values, optimal function value, samples or observations, obatained values and search space.
  • Bayesian.png Convergence plot.
  • Bayesian_data_res.txt File with the minf(x) after n calls in each iteration.

Step 2:

Usearch pipeline optimazed on wild type lines for studying results of optimization.

Step2_usearch_WT_to_DB.sh dif pct maxee amp id path_control name_dir_usearch path_database trim_primers


Help:

Arguments must be disposed in the order indicated before.

  • dif Optimal value for dif Usearch parameter.
  • pct Optimal value for pct Usearch parameter.
  • maxee Optimal value for maxee Usearch parameter.
  • amp Optimal value for amp Usearch parameter.
  • id Optimal value for id Usearch parameter.
  • path_control Path of the wild type lines fastq files.
  • name_dir_usearch Path of Usearch.
  • path_database Path of alpha-gliadin amplicon database.
  • trim_primers Trim primers in reads if you use database without primers. Optios: YES | NO.


Outputs:

Usearch merge files, filter files, unique amplicons file, unique denoised amplicon (Amp/otu) file, otu table file.

Step 3:

Usearch pipeline optimazed on all lines (wild types and CRISPR lines) for studying denoised unique amplicon relative abundances.

Step3_usearch_ALL_LINES.sh dif pct maxee amp id path_ALL name_dir_usearch trim_primers


Help:

Arguments must be disposed in the order indicated before.

  • dif Optimal value for dif Usearch parameter.
  • pct Optimal value for pct Usearch parameter.
  • maxee Optimal value for maxee Usearch parameter.
  • amp Optimal value for amp Usearch parameter.
  • id Optimal value for id Usearch parameter.
  • path_ALL Path of all lines (wild type and CRISPR lines) fastq files.
  • name_dir_usearch Path of Usearch.
  • trim_primers Trim primers in reads if you use database without primers. Optios: YES | NO.


Outputs:

Usearch merge files, filter files, unique amplicon file, unique denoised amplicon (Amp/otu) file, otu table file.

Before Step 4, otu table file must be normalized by TMM normalization method (edgeR package in R). Results of TMM normalized unique denoised amplicons table can be represented as heatmaps. Unique denoised amplicons can be compared between them to detect Insertions and Deletions (InDels) in CRISPR lines.

Step 4:

Create tables with the presence or absence of unique denoised amplicons in each CRISPR line compared to the wild type lines.

python Step4_usearch_to_table.py --file_otu 
   
     --file_group 
    
      --prefix_output 
     
       --genotype 
      

      
     
    
   


Help:

Argument Help
--file_otu File of TMM normalized otu_table from usearch. Remove "#OTU" from the first line.
--file_group Path to file of genotypes in wild type and CRISPR lines. Example in /Examples/Example_groups.txt.
--prefix_output Prefix to output name. Example: if you are working with BW208 groups: BW.
--genotype Genotype name. Example: if you are working with BW208 groups: BW208.

Default threshold 0.3 % of frequency of each unique denoised amplicon (Amp) in each line.


Outputs:

Substitute "name" in output names for the prefix_output string.

  • Amptable_frequency.txt Table of Amps (otus) transformed to frequencies for apply the threshold.
  • Amptable_brutes_name.txt Table with number of reads contained in the unique denoised amplicons (Amps) present in each line.
  • Amps_name.txt Table with number of unique denoised amplicons (Amps) in each line.

Python 3.6 or later is required.

Detecting Underwater Objects (DUO)

Underwater object detection for robot picking has attracted a lot of interest. However, it is still an unsolved problem due to several challenges. We take steps towards making it more realistic by ad

27 Dec 12, 2022
Data Analysis for First Year Laboratory at Imperial College, London.

Data Analysis for First Year Laboratory at Imperial College, London. For personal reference only, and to reference in lab reports and lab books.

Martin He 0 Aug 29, 2022
Mining the Stack Overflow Developer Survey

Mining the Stack Overflow Developer Survey A prototype data mining application to compare the accuracy of decision tree and random forest regression m

1 Nov 16, 2021
Weather Image Recognition - Python weather application using series of data

Weather Image Recognition - Python weather application using series of data

Kushal Shingote 1 Feb 04, 2022
WAL enables programmable waveform analysis.

This repro introcudes the Waveform Analysis Language (WAL). The initial paper on WAL will appear at ASPDAC'22 and can be downloaded here: https://www.

Institute for Complex Systems (ICS), Johannes Kepler University Linz 40 Dec 13, 2022
A pipeline that creates consensus sequences from a Nanopore reads. I

A pipeline that creates consensus sequences from a Nanopore reads. It clusters reads that are similar to each other and creates a consensus that is then identified using BLAST.

Ada Madejska 2 May 15, 2022
Larch: Applications and Python Library for Data Analysis of X-ray Absorption Spectroscopy (XAS, XANES, XAFS, EXAFS), X-ray Fluorescence (XRF) Spectroscopy and Imaging

Larch: Data Analysis Tools for X-ray Spectroscopy and More Documentation: http://xraypy.github.io/xraylarch Code: http://github.com/xraypy/xraylarch L

xraypy 95 Dec 13, 2022
A lightweight interface for reading in output from the Weather Research and Forecasting (WRF) model into xarray Dataset

xwrf A lightweight interface for reading in output from the Weather Research and Forecasting (WRF) model into xarray Dataset. The primary objective of

National Center for Atmospheric Research 43 Nov 29, 2022
Instant search for and access to many datasets in Pyspark.

SparkDataset Provides instant access to many datasets right from Pyspark (in Spark DataFrame structure). Drop a star if you like the project. 😃 Motiv

Souvik Pratiher 31 Dec 16, 2022
Flood modeling by 2D shallow water equation

hydraulicmodel Flood modeling by 2D shallow water equation. Refer to Hunter et al (2005), Bates et al. (2010). Diffusive wave approximation Local iner

6 Nov 30, 2022
A notebook to analyze Amazon Recommendation Review Dataset.

Amazon Recommendation Review Dataset Analyzer A notebook to analyze Amazon Recommendation Review Dataset. Features Calculates distinct user count, dis

isleki 3 Aug 22, 2022
Scraping and analysis of leetcode-compensations page.

Leetcode compensations report Scraping and analysis of leetcode-compensations page.

utsav 96 Jan 01, 2023
Using Python to derive insights on particular Pokemon, Types, Generations, and Stats

Pokémon Analysis Andreas Nikolaidis February 2022 Introduction Exploratory Analysis Correlations & Descriptive Statistics Principal Component Analysis

Andreas 1 Feb 18, 2022
Investigating EV charging data

Investigating EV charging data Introduction: Got an opportunity to work with a home monitoring technology company over the last 6 months whose goal wa

Yash 2 Apr 07, 2022
Repositori untuk menyimpan material Long Course STMKGxHMGI tentang Geophysical Python for Seismic Data Analysis

Long Course "Geophysical Python for Seismic Data Analysis" Instruktur: Dr.rer.nat. Wiwit Suryanto, M.Si Dipersiapkan oleh: Anang Sahroni Waktu: Sesi 1

Anang Sahroni 0 Dec 04, 2021
MapReader: A computer vision pipeline for the semantic exploration of maps at scale

MapReader A computer vision pipeline for the semantic exploration of maps at scale MapReader is an end-to-end computer vision (CV) pipeline designed b

Living with Machines 25 Dec 26, 2022
Hidden Markov Models in Python, with scikit-learn like API

hmmlearn hmmlearn is a set of algorithms for unsupervised learning and inference of Hidden Markov Models. For supervised learning learning of HMMs and

2.7k Jan 03, 2023
Average time per match by division

HW_02 Unzip matches.rar to access .json files for matches. Get an API key to access their data at: https://developer.riotgames.com/ Average time per m

11 Jan 07, 2022
Template for a Dataflow Flex Template in Python

Dataflow Flex Template in Python This repository contains a template for a Dataflow Flex Template written in Python that can easily be used to build D

STOIX 5 Apr 28, 2022
Exploratory Data Analysis of the 2019 Indian General Elections using a dataset from Kaggle.

2019-indian-election-eda Exploratory Data Analysis of the 2019 Indian General Elections using a dataset from Kaggle. This project is a part of the Cou

Souradeep Banerjee 5 Oct 10, 2022