InDels analysis of CRISPR lines by NGS amplicon sequencing technology for a multicopy gene family.

Overview

CRISPRanalysis

InDels analysis of CRISPR lines by NGS amplicon sequencing technology for a multicopy gene family.

In this work, we present a workflow to analyze InDels from the multicopy α-gliadin gene family from wheat based on NGS data without the need to pre-viously establish a reference sequence for each genetic background. The pipeline was tested it in a multiple sample set, including three generations of edited wheat lines (T0, T1, and T2), from three different backgrounds and ploidy levels (hexaploid and tetraploid). Implementation of Bayesian optimization of Usearch parameters, inhouse Python, and bash scripts are reported.

Workflow:

Step1:

Bayesian optimization was implemented to optimize Usearch v9.2.64 parameters from merge to search steps for the α-gliadin amplicons on the wild type lines.

python Step1_Bayesian_usearch.py --database 
   
     --file_intervals 
    
      --trim_primers 
     
       --path_usearch_control 
      

      
     
    
   


Help:

Argument Help
--database File fasta with database sequences. Example: /path/to/database/database.fasta.
--file_intervals File with intervals for parameters. Example in /Examples/Example_intervals.txt.
--trim_primers Trim primers in reads if you use database without primers. Optios: YES | NO.
--path_usearch_control Path of usearch and control raw data separated by "," without white spaces. Example: /paht/to/usearch,/path/to/reads_control.


Outputs:

  • Bayesian_usearch.txt File with optimal values, optimal function value, samples or observations, obatained values and search space.
  • Bayesian.png Convergence plot.
  • Bayesian_data_res.txt File with the minf(x) after n calls in each iteration.

Step 2:

Usearch pipeline optimazed on wild type lines for studying results of optimization.

Step2_usearch_WT_to_DB.sh dif pct maxee amp id path_control name_dir_usearch path_database trim_primers


Help:

Arguments must be disposed in the order indicated before.

  • dif Optimal value for dif Usearch parameter.
  • pct Optimal value for pct Usearch parameter.
  • maxee Optimal value for maxee Usearch parameter.
  • amp Optimal value for amp Usearch parameter.
  • id Optimal value for id Usearch parameter.
  • path_control Path of the wild type lines fastq files.
  • name_dir_usearch Path of Usearch.
  • path_database Path of alpha-gliadin amplicon database.
  • trim_primers Trim primers in reads if you use database without primers. Optios: YES | NO.


Outputs:

Usearch merge files, filter files, unique amplicons file, unique denoised amplicon (Amp/otu) file, otu table file.

Step 3:

Usearch pipeline optimazed on all lines (wild types and CRISPR lines) for studying denoised unique amplicon relative abundances.

Step3_usearch_ALL_LINES.sh dif pct maxee amp id path_ALL name_dir_usearch trim_primers


Help:

Arguments must be disposed in the order indicated before.

  • dif Optimal value for dif Usearch parameter.
  • pct Optimal value for pct Usearch parameter.
  • maxee Optimal value for maxee Usearch parameter.
  • amp Optimal value for amp Usearch parameter.
  • id Optimal value for id Usearch parameter.
  • path_ALL Path of all lines (wild type and CRISPR lines) fastq files.
  • name_dir_usearch Path of Usearch.
  • trim_primers Trim primers in reads if you use database without primers. Optios: YES | NO.


Outputs:

Usearch merge files, filter files, unique amplicon file, unique denoised amplicon (Amp/otu) file, otu table file.

Before Step 4, otu table file must be normalized by TMM normalization method (edgeR package in R). Results of TMM normalized unique denoised amplicons table can be represented as heatmaps. Unique denoised amplicons can be compared between them to detect Insertions and Deletions (InDels) in CRISPR lines.

Step 4:

Create tables with the presence or absence of unique denoised amplicons in each CRISPR line compared to the wild type lines.

python Step4_usearch_to_table.py --file_otu 
   
     --file_group 
    
      --prefix_output 
     
       --genotype 
      

      
     
    
   


Help:

Argument Help
--file_otu File of TMM normalized otu_table from usearch. Remove "#OTU" from the first line.
--file_group Path to file of genotypes in wild type and CRISPR lines. Example in /Examples/Example_groups.txt.
--prefix_output Prefix to output name. Example: if you are working with BW208 groups: BW.
--genotype Genotype name. Example: if you are working with BW208 groups: BW208.

Default threshold 0.3 % of frequency of each unique denoised amplicon (Amp) in each line.


Outputs:

Substitute "name" in output names for the prefix_output string.

  • Amptable_frequency.txt Table of Amps (otus) transformed to frequencies for apply the threshold.
  • Amptable_brutes_name.txt Table with number of reads contained in the unique denoised amplicons (Amps) present in each line.
  • Amps_name.txt Table with number of unique denoised amplicons (Amps) in each line.

Python 3.6 or later is required.

A data analysis using python and pandas to showcase trends in school performance.

A data analysis using python and pandas to showcase trends in school performance. A data analysis to showcase trends in school performance using Panda

Jimmy Faccioli 0 Sep 07, 2021
Create HTML profiling reports from pandas DataFrame objects

Pandas Profiling Documentation | Slack | Stack Overflow Generates profile reports from a pandas DataFrame. The pandas df.describe() function is great

10k Jan 01, 2023
Template for a Dataflow Flex Template in Python

Dataflow Flex Template in Python This repository contains a template for a Dataflow Flex Template written in Python that can easily be used to build D

STOIX 5 Apr 28, 2022
Data exploration done quick.

Pandas Tab Implementation of Stata's tabulate command in Pandas for extremely easy to type one-way and two-way tabulations. Support: Python 3.7 and 3.

W.D. 20 Aug 27, 2022
Yet Another Workflow Parser for SecurityHub

YAWPS Yet Another Workflow Parser for SecurityHub "Screaming pepper" by Rum Bucolic Ape is licensed with CC BY-ND 2.0. To view a copy of this license,

myoung34 8 Dec 22, 2022
Hangar is version control for tensor data. Commit, branch, merge, revert, and collaborate in the data-defined software era.

Overview docs tests package Hangar is version control for tensor data. Commit, branch, merge, revert, and collaborate in the data-defined software era

Tensorwerk 193 Nov 29, 2022
A distributed block-based data storage and compute engine

Nebula is an extremely-fast end-to-end interactive big data analytics solution. Nebula is designed as a high-performance columnar data storage and tabular OLAP engine.

Columns AI 131 Dec 26, 2022
Data Analytics: Modeling and Studying data relating to climate change and adoption of electric vehicles

Correlation-Study-Climate-Change-EV-Adoption Data Analytics: Modeling and Studying data relating to climate change and adoption of electric vehicles I

Jonathan Feng 1 Jan 03, 2022
Produces a summary CSV report of an Amber Electric customer's energy consumption and cost data.

Amber Electric Usage Summary This is a command line tool that produces a summary CSV report of an Amber Electric customer's energy consumption and cos

Graham Lea 12 May 26, 2022
ETL flow framework based on Yaml configs in Python

ETL framework based on Yaml configs in Python A light framework for creating data streams. Setting up streams through configuration in the Yaml file.

Павел Максимов 18 Jul 06, 2022
A stock analysis app with streamlit

StockAnalysisApp A stock analysis app with streamlit. You select the ticker of the stock and the app makes a series of analysis by using the price cha

Antonio Catalano 50 Nov 27, 2022
Learn machine learning the fun way, with Oracle and RedBull Racing

Red Bull Racing Analytics Hands-On Labs Introduction Are you interested in learning machine learning (ML)? How about doing this in the context of the

Oracle DevRel 55 Oct 24, 2022
Containerized Demo of Apache Spark MLlib on a Data Lakehouse (2022)

Spark-DeltaLake-Demo Reliable, Scalable Machine Learning (2022) This project was completed in an attempt to become better acquainted with the latest b

8 Mar 21, 2022
fds is a tool for Data Scientists made by DAGsHub to version control data and code at once.

Fast Data Science, AKA fds, is a CLI for Data Scientists to version control data and code at once, by conveniently wrapping git and dvc

DAGsHub 359 Dec 22, 2022
Implementation in Python of the reliability measures such as Omega.

reliabiliPy Summary Simple implementation in Python of the [reliability](https://en.wikipedia.org/wiki/Reliability_(statistics) measures for surveys:

Rafael Valero Fernández 2 Apr 27, 2022
Conduits - A Declarative Pipelining Tool For Pandas

Conduits - A Declarative Pipelining Tool For Pandas Traditional tools for declaring pipelines in Python suck. They are mostly imperative, and can some

Kale Miller 7 Nov 21, 2021
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023
A tax calculator for stocks and dividends activities.

Revolut Stocks calculator for Bulgarian National Revenue Agency Information Processing and calculating the required information about stock possession

Doino Gretchenliev 200 Oct 25, 2022
Statistical & Probabilistic Analysis of Store Sales, University Survey, & Manufacturing data

Statistical_Modelling Statistical & Probabilistic Analysis of Store Sales, University Survey, & Manufacturing data Statistical Methods for Decision Ma

Avnika Mehta 1 Jan 27, 2022
MoRecon - A tool for reconstructing missing frames in motion capture data.

MoRecon - A tool for reconstructing missing frames in motion capture data.

Yuki Nishidate 38 Dec 03, 2022