Automatic meme generation model using Tensorflow Keras.

Overview

Memefly

You can find the project at MemeflyAI.

Contributors

Nick Buukhalter Harsh Desai Han Lee

MIT Python Tensorflow Tensorflow Serving Docker

Project Overview

Trello Board

Product Canvas

Automatic meme generation model using Tensorflow Keras. Model is Dockerized and served as a REST API with FastAPI/uvicorn ASGI endpoint. A separate serving model serving is done with a combination of FastAPI/uvicorn ASGI endpoint with models served using Tensorflow Serving on Sagemaker.

Tech Stack

Python Packages

  • Numpy
  • Pandas
  • Tensorflow
  • FastAPI
  • Selenium

DevOps

  • Tensorflow Serving
  • Docker
  • MySQL
  • MongoDB
  • AWS ECR
  • AWS Elastic Beanstalk
  • AWS S3
  • AWS Sagemaker

Architecture

memefly_architecture

Predictions

We used an encoder-decoder architecture for the meme generation task. Pre-trained Inception V3 architecture and weights are used as the encoder to extract embeddings from an input image. At the same time, we encode the texts into text embeddings and concat them together with image embeddings. For the decoder, we used GRU to to map the image and text embeddings to predict the next word in the text string.

At training time, we repeat the same image embeddings as input and send in text sequences in order, e.g., 0. this, 1. this is, 2. this is a, 3. this is a sequence. The model will try to predict the next word in the sequence given the input image embedding and text embeddings. We denote the beginning and the end of a text sequence with startseq and endseq.

At inferencing time, we send in image embeddings and the seed token startseq to the model, and then repeatly send in the image embeddings and the prediction output of the previous timestep, until either we see endseq or reach maximum sentence length. To improve the quality of the output, we used beam search to greedily select the best N sentences. But it has to be noted that beam search is neither optimal nor complete algorithm.

To increase varieties, we tried 1) adding Guassian noise to the input image and 2) choosing top N sentence scores using beam search.

The architecture is summarized here:

architecture

In-sample Meme

in-sample

Out-of-sample Meme

out-of-sample

Batch Example Outputs

memes

Explanatory Variables

  • Image
  • Text

Data Sources

Please see Data Engineering for details.

Python Notebooks

Training Notebook

Inferencing Notebook

How to connect to the web API

Please see Machine Learning Engineering - Deployment for details.

How to connect to the data API

Please see Data Engineering for details.

Contributing

When contributing to this repository, please first discuss the change you wish to make via issue, email, or any other method with the owners of this repository before making a change.

Please note we have a code of conduct. Please follow it in all your interactions with the project.

Issue/Bug Request

If you are having an issue with the existing project code, please submit a bug report under the following guidelines:

  • Check first to see if your issue has already been reported.
  • Check to see if the issue has recently been fixed by attempting to reproduce the issue using the latest master branch in the repository.
  • Create a live example of the problem.
  • Submit a detailed bug report including your environment & browser, steps to reproduce the issue, actual and expected outcomes, where you believe the issue is originating from, and any potential solutions you have considered.

Feature Requests

We would love to hear from you about new features which would improve this app and further the aims of our project. Please provide as much detail and information as possible to show us why you think your new feature should be implemented.

Pull Requests

If you have developed a patch, bug fix, or new feature that would improve this app, please submit a pull request. It is best to communicate your ideas with the developers first before investing a great deal of time into a pull request to ensure that it will mesh smoothly with the project.

Remember that this project is licensed under the MIT license, and by submitting a pull request, you agree that your work will be, too.

Pull Request Guidelines

  • Ensure any install or build dependencies are removed before the end of the layer when doing a build.
  • Update the README.md with details of changes to the interface, including new plist variables, exposed ports, useful file locations and container parameters.
  • Ensure that your code conforms to our existing code conventions and test coverage.
  • Include the relevant issue number, if applicable.
  • You may merge the Pull Request in once you have the sign-off of two other developers, or if you do not have permission to do that, you may request the second reviewer to merge it for you.

Attribution

These contribution guidelines have been adapted from this good-Contributing.md-template.

Documentation

See Data Engineering for details on the data engineering of our project.

See Machine Learning Engineering - Training for details on the training part of our project.

See Machine Learning Engineering - Deployment for details on the deployment of our project.

Owner
BloomTech Labs
We are the Bloom Institute of Technology's Labs Organization, hosting the products our learners build during their time in BloomTech Labs.
BloomTech Labs
CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation

CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation (CVPR 2021, oral presentation) CoCosNet v2: Full-Resolution Correspondence

Microsoft 308 Dec 07, 2022
Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available for research purposes.

Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available f

Yongrui Chen 5 Nov 10, 2022
SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches

SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches [Paper]  [Project Page]  [Interactive Demo]  [Supplementary Material]        Usag

215 Dec 25, 2022
RP-GAN: Stable GAN Training with Random Projections

RP-GAN: Stable GAN Training with Random Projections This repository contains a reference implementation of the algorithm described in the paper: Behna

Ayan Chakrabarti 20 Sep 18, 2021
AdamW optimizer for bfloat16 models in pytorch.

Image source AdamW optimizer for bfloat16 models in pytorch. Bfloat16 is currently an optimal tradeoff between range and relative error for deep netwo

Alex Rogozhnikov 8 Nov 20, 2022
The implementation of "Optimizing Shoulder to Shoulder: A Coordinated Sub-Band Fusion Model for Real-Time Full-Band Speech Enhancement"

SF-Net for fullband SE This is the repo of the manuscript "Optimizing Shoulder to Shoulder: A Coordinated Sub-Band Fusion Model for Real-Time Full-Ban

Guochen Yu 36 Dec 02, 2022
Least Square Calibration for Peer Reviews

Least Square Calibration for Peer Reviews Requirements gurobipy - for solving convex programs GPy - for Bayesian baseline numpy pandas To generate p

Sigma <a href=[email protected]"> 1 Nov 01, 2021
A Protein-RNA Interface Predictor Based on Semantics of Sequences

PRIP PRIP:A Protein-RNA Interface Predictor Based on Semantics of Sequences installation gensim==3.8.3 matplotlib==3.1.3 xgboost==1.3.3 prettytable==2

李优 0 Mar 25, 2022
Contains source code for the winning solution of the xView3 challenge

Winning Solution for xView3 Challenge This repository contains source code and pretrained models for my (Eugene Khvedchenya) solution to xView 3 Chall

Eugene Khvedchenya 51 Dec 30, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Jan 04, 2023
Official implementation of "Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets" (CVPR2021)

Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets This is the official implementation of "Towards Good Pract

Sanja Fidler's Lab 52 Nov 22, 2022
A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images

BaSiC Matlab code accompanying A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images by Tingying Peng, Kurt Thorn, Timm Schr

Marr Lab 34 Dec 18, 2022
Calculates carbon footprint based on fuel mix and discharge profile at the utility selected. Can create graphs and tabular output for fuel mix based on input file of series of power drawn over a period of time.

carbon-footprint-calculator Conda distribution ~/anaconda3/bin/conda install anaconda-client conda-build ~/anaconda3/bin/conda config --set anaconda_u

Seattle university Renewable energy research 7 Sep 26, 2022
Voice Conversion by CycleGAN (语音克隆/语音转换):CycleGAN-VC3

CycleGAN-VC3-PyTorch 中文说明 | English This code is a PyTorch implementation for paper: CycleGAN-VC3: Examining and Improving CycleGAN-VCs for Mel-spectr

Kun Ma 110 Dec 24, 2022
More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval

More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdh

Ayan Kumar Bhunia 22 Aug 27, 2022
Author's PyTorch implementation of TD3 for OpenAI gym tasks

Addressing Function Approximation Error in Actor-Critic Methods PyTorch implementation of Twin Delayed Deep Deterministic Policy Gradients (TD3). If y

Scott Fujimoto 1.3k Dec 25, 2022
Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python

deepface Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid

Kushal Shingote 2 Feb 10, 2022
Yggdrasil - A simplistic bot designed to streamline your server experience

Ygggdrasil A simplistic bot designed to streamline your server experience. Desig

Sntx_ 1 Dec 14, 2022
Implementation of ConvMixer for "Patches Are All You Need? 🤷"

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?" by Asher

CMU Locus Lab 934 Jan 08, 2023
offical implement of our Lifelong Person Re-Identification via Adaptive Knowledge Accumulation in CVPR2021

LifelongReID Offical implementation of our Lifelong Person Re-Identification via Adaptive Knowledge Accumulation in CVPR2021 by Nan Pu, Wei Chen, Yu L

PeterPu 76 Dec 08, 2022