Automatic meme generation model using Tensorflow Keras.

Overview

Memefly

You can find the project at MemeflyAI.

Contributors

Nick Buukhalter Harsh Desai Han Lee

MIT Python Tensorflow Tensorflow Serving Docker

Project Overview

Trello Board

Product Canvas

Automatic meme generation model using Tensorflow Keras. Model is Dockerized and served as a REST API with FastAPI/uvicorn ASGI endpoint. A separate serving model serving is done with a combination of FastAPI/uvicorn ASGI endpoint with models served using Tensorflow Serving on Sagemaker.

Tech Stack

Python Packages

  • Numpy
  • Pandas
  • Tensorflow
  • FastAPI
  • Selenium

DevOps

  • Tensorflow Serving
  • Docker
  • MySQL
  • MongoDB
  • AWS ECR
  • AWS Elastic Beanstalk
  • AWS S3
  • AWS Sagemaker

Architecture

memefly_architecture

Predictions

We used an encoder-decoder architecture for the meme generation task. Pre-trained Inception V3 architecture and weights are used as the encoder to extract embeddings from an input image. At the same time, we encode the texts into text embeddings and concat them together with image embeddings. For the decoder, we used GRU to to map the image and text embeddings to predict the next word in the text string.

At training time, we repeat the same image embeddings as input and send in text sequences in order, e.g., 0. this, 1. this is, 2. this is a, 3. this is a sequence. The model will try to predict the next word in the sequence given the input image embedding and text embeddings. We denote the beginning and the end of a text sequence with startseq and endseq.

At inferencing time, we send in image embeddings and the seed token startseq to the model, and then repeatly send in the image embeddings and the prediction output of the previous timestep, until either we see endseq or reach maximum sentence length. To improve the quality of the output, we used beam search to greedily select the best N sentences. But it has to be noted that beam search is neither optimal nor complete algorithm.

To increase varieties, we tried 1) adding Guassian noise to the input image and 2) choosing top N sentence scores using beam search.

The architecture is summarized here:

architecture

In-sample Meme

in-sample

Out-of-sample Meme

out-of-sample

Batch Example Outputs

memes

Explanatory Variables

  • Image
  • Text

Data Sources

Please see Data Engineering for details.

Python Notebooks

Training Notebook

Inferencing Notebook

How to connect to the web API

Please see Machine Learning Engineering - Deployment for details.

How to connect to the data API

Please see Data Engineering for details.

Contributing

When contributing to this repository, please first discuss the change you wish to make via issue, email, or any other method with the owners of this repository before making a change.

Please note we have a code of conduct. Please follow it in all your interactions with the project.

Issue/Bug Request

If you are having an issue with the existing project code, please submit a bug report under the following guidelines:

  • Check first to see if your issue has already been reported.
  • Check to see if the issue has recently been fixed by attempting to reproduce the issue using the latest master branch in the repository.
  • Create a live example of the problem.
  • Submit a detailed bug report including your environment & browser, steps to reproduce the issue, actual and expected outcomes, where you believe the issue is originating from, and any potential solutions you have considered.

Feature Requests

We would love to hear from you about new features which would improve this app and further the aims of our project. Please provide as much detail and information as possible to show us why you think your new feature should be implemented.

Pull Requests

If you have developed a patch, bug fix, or new feature that would improve this app, please submit a pull request. It is best to communicate your ideas with the developers first before investing a great deal of time into a pull request to ensure that it will mesh smoothly with the project.

Remember that this project is licensed under the MIT license, and by submitting a pull request, you agree that your work will be, too.

Pull Request Guidelines

  • Ensure any install or build dependencies are removed before the end of the layer when doing a build.
  • Update the README.md with details of changes to the interface, including new plist variables, exposed ports, useful file locations and container parameters.
  • Ensure that your code conforms to our existing code conventions and test coverage.
  • Include the relevant issue number, if applicable.
  • You may merge the Pull Request in once you have the sign-off of two other developers, or if you do not have permission to do that, you may request the second reviewer to merge it for you.

Attribution

These contribution guidelines have been adapted from this good-Contributing.md-template.

Documentation

See Data Engineering for details on the data engineering of our project.

See Machine Learning Engineering - Training for details on the training part of our project.

See Machine Learning Engineering - Deployment for details on the deployment of our project.

Owner
BloomTech Labs
We are the Bloom Institute of Technology's Labs Organization, hosting the products our learners build during their time in BloomTech Labs.
BloomTech Labs
Install alphafold on the local machine, get out of docker.

AlphaFold This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP

Kui Xu 73 Dec 13, 2022
Near-Duplicate Video Retrieval with Deep Metric Learning

Near-Duplicate Video Retrieval with Deep Metric Learning This repository contains the Tensorflow implementation of the paper Near-Duplicate Video Retr

2 Jan 24, 2022
PyTorch implementation of Wide Residual Networks with 1-bit weights by McDonnell (ICLR 2018)

1-bit Wide ResNet PyTorch implementation of training 1-bit Wide ResNets from this paper: Training wide residual networks for deployment using a single

Sergey Zagoruyko 122 Dec 07, 2022
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
A modular PyTorch library for optical flow estimation using neural networks

A modular PyTorch library for optical flow estimation using neural networks

neu-vig 113 Dec 20, 2022
[2021][ICCV][FSNet] Full-Duplex Strategy for Video Object Segmentation

Full-Duplex Strategy for Video Object Segmentation (ICCV, 2021) Authors: Ge-Peng Ji, Keren Fu, Zhe Wu, Deng-Ping Fan*, Jianbing Shen, & Ling Shao This

Daniel-Ji 55 Dec 22, 2022
DeepLab resnet v2 model in pytorch

pytorch-deeplab-resnet DeepLab resnet v2 model implementation in pytorch. The architecture of deepLab-ResNet has been replicated exactly as it is from

Isht Dwivedi 601 Dec 22, 2022
Using modified BiSeNet for face parsing in PyTorch

face-parsing.PyTorch Contents Training Demo References Training Prepare training data: -- download CelebAMask-HQ dataset -- change file path in the pr

zll 1.6k Jan 08, 2023
Semantic Segmentation of images using PixelLib with help of Pascalvoc dataset trained with Deeplabv3+ framework.

CARscan- Approach 1 - Segmentation of images by detecting contours. It failed because in images with elements along with cars were also getting detect

Padmanabha Banerjee 5 Jul 29, 2021
render sprites into your desktop environment as shaped windows using GTK

spritegtk render static or animated sprites into your desktop environment as dynamic shaped windows using GTK requires pycairo and PYGobject: pip inst

hermit 20 Oct 27, 2022
Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt

Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt. This is done by

Mehdi Cherti 135 Dec 30, 2022
Multi Agent Path Finding Algorithms

MATP-solver Simulator collision check path step random initial states or given states Traditional method Seperate A* algorithem Confict-based Search S

30 Dec 12, 2022
Pytorch re-implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text Recognition (CVPR 2022)

SwinTextSpotter This is the pytorch implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text R

mxin262 183 Jan 03, 2023
The Submission for SIMMC 2.0 Challenge 2021

The Submission for SIMMC 2.0 Challenge 2021 challenge website Requirements python 3.8.8 pytorch 1.8.1 transformers 4.8.2 apex for multi-gpu nltk Prepr

5 Jul 26, 2022
PyArmadillo: an alternative approach to linear algebra in Python

PyArmadillo is a linear algebra library for the Python language, with an emphasis on ease of use.

Terry Zhuo 58 Oct 11, 2022
[SIGMETRICS 2022] One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search

One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search paper | website One Proxy Device Is Enough for Hardware-Aware Neural Architec

10 Dec 16, 2022
PyTorch implementation for the paper Pseudo Numerical Methods for Diffusion Models on Manifolds

Pseudo Numerical Methods for Diffusion Models on Manifolds (PNDM) This repo is the official PyTorch implementation for the paper Pseudo Numerical Meth

Luping Liu (刘路平) 196 Jan 05, 2023
Learning Logic Rules for Document-Level Relation Extraction

LogiRE Learning Logic Rules for Document-Level Relation Extraction We propose to introduce logic rules to tackle the challenges of doc-level RE. Equip

41 Dec 26, 2022
Implements an infinite sum of poisson-weighted convolutions

An infinite sum of Poisson-weighted convolutions Kyle Cranmer, Aug 2018 If viewing on GitHub, this looks better with nbviewer: click here Consider a v

Kyle Cranmer 26 Dec 07, 2022
U-Time: A Fully Convolutional Network for Time Series Segmentation

U-Time & U-Sleep Official implementation of The U-Time [1] model for general-purpose time-series segmentation. The U-Sleep [2] model for resilient hig

Mathias Perslev 176 Dec 19, 2022