Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures.

Overview

NLP_0-project

Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures1. We are a "democratic" and collaborative group of five, and I mentioned our names based on our initial work division below 😄 .

Here is the outline of our project:

Data collection.

@LeiyuanHuo, jyang130, FanFanShark, xdc1999, gaojiamin1116

  • Based on file data-WRDS-list.csv, write a web-scraping algorithm to download all 10-Ks (html format) these companies filed to the SEC within 2010 to 2022 at Historical EDGAR documents, and rename them data-10K-COMPNAME-Year.html.
  • Parse html files to extract Business and MD&A sections.

Text Processing: feature extraction2

  • Part of Speech Tagging (POS) (mainly this method) to get product name, descriptions. Store these for each company.
  • Named Entity Recognition (NER) (also mainly this method) to get mentioned competitor names. Store these for each company.
  • Product texts: BoW and tf-idf for each company's product(s), and hopefully we have a term-product matrix then.
  • Competitor texts: definitely BoW, as we care about the frequency of being mentioned.
  • ‌ We also need to combine sector and firm size/market power into competitor texts and re-count.

Text Processing: feature transformation and representation2

  • Term-product matrix: calculate cosine similarity scores for products pairwise; use score threshold to cluster products into similar groups.
  • Term-product matrix: directly apply clustering method (e.g., KMeans clustering) to product vectors, and cluster them.

Econometric Analysis and Hypothesis Testing2

  • Multivariate regression: DV is profitability (e.g., sales, revenue, Tobin's q), IV is competition measures (one from similar product count, one from mentions as competitors), also include relevant control variables.
  • Cross-section portfolios: our competition measures are cross-sectional (one for each year), so we can create long-short portfolios for both measures, and examine stock return effects.

Footnotes

  1. Two papers inspired this project. Citations: Eisdorfer, A., Froot, K., Ozik, G., & Sadka, R. (2021). Competition Links and Stock Returns. The Review of Financial Studies, The Review of financial studies, 2021-12-20. && Hoberg, G., & Phillips, G. (2016). Text-Based Network Industries and Endogenous Product Differentiation. The Journal of Political Economy, 124(5), 1423-1465. ↩

  2. Text processing processes are based on MFIN7036 Lecture_Notes and a review paper. Citation: Marty, T., Vanstone, B., & Hahn, T. (2020). News media analytics in finance: A survey. Accounting and Finance (Parkville), 60(2), 1385-1434. ↩ ↩ 2 ↩ 3

Ian Covert 130 Jan 01, 2023
Active and Sample-Efficient Model Evaluation

Active Testing: Sample-Efficient Model Evaluation Hi, good to see you here! 👋 This is code for "Active Testing: Sample-Efficient Model Evaluation". P

Jannik Kossen 19 Oct 30, 2022
EMNLP 2021 paper The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers.

Codebase for training transformers on systematic generalization datasets. The official repository for our EMNLP 2021 paper The Devil is in the Detail:

CsordĂĄs RĂłbert 57 Nov 21, 2022
Realtime_Multi-Person_Pose_Estimation

Introduction Multi Person PoseEstimation By PyTorch Results Require Pytorch Installation git submodule init && git submodule update Demo Download conv

tensorboy 1.3k Jan 05, 2023
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

[CVPRW 2021] - Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation

Anirudh S Chakravarthy 6 May 03, 2022
Tensorflow AffordanceNet and AffContext implementations

AffordanceNet and AffContext This is tensorflow AffordanceNet and AffContext implementations. Both are implemented and tested with tensorflow 2.3. The

Beatriz Pérez 6 Dec 01, 2022
Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021.

SphereRPN Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021. Authors: Th

Thang Vu 15 Dec 02, 2022
Video-based open-world segmentation

UVO_Challenge Team Alpes_runner Solutions This is an official repo for our UVO Challenge solutions for Image/Video-based open-world segmentation. Our

Yuming Du 84 Dec 22, 2022
Learning embeddings for classification, retrieval and ranking.

StarSpace StarSpace is a general-purpose neural model for efficient learning of entity embeddings for solving a wide variety of problems: Learning wor

Facebook Research 3.8k Dec 22, 2022
This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.

PyTorch Infer Utils This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model infer

Alex Gorodnitskiy 11 Mar 20, 2022
Face Recognition plus identification simply and fast | Python

PyFaceDetection Face Recognition plus identification simply and fast Ubuntu Setup sudo pip3 install numpy sudo pip3 install cmake sudo pip3 install dl

Peyman Majidi Moein 16 Sep 22, 2022
Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection"

CrossTeaching-SSOD 0. Introduction Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection" This repo include

Bruno Ma 9 Nov 29, 2022
Open-source code for Generic Grouping Network (GGN, CVPR 2022)

Open-World Instance Segmentation: Exploiting Pseudo Ground Truth From Learned Pairwise Affinity Pytorch implementation for "Open-World Instance Segmen

Meta Research 99 Dec 06, 2022
Accelerated deep learning R&D

Accelerated deep learning R&D PyTorch framework for Deep Learning research and development. It focuses on reproducibility, rapid experimentation, and

Catalyst-Team 3.1k Jan 06, 2023
This project contains an implemented version of Face Detection using OpenCV and Mediapipe. This is a code snippet and can be used in projects.

Live-Face-Detection Project Description: In this project, we will be using the live video feed from the camera to detect Faces. It will also detect so

Hassan Shahzad 3 Oct 02, 2021
Detecting Blurred Ground-based Sky/Cloud Images

Detecting Blurred Ground-based Sky/Cloud Images With the spirit of reproducible research, this repository contains all the codes required to produce t

1 Oct 20, 2021
Prompts - Read a textfile of prompts and import into anki via ankiconnect

prompts read a textfile of prompts and import into anki via ankiconnect Usage In

Alexander Cobleigh 2 Jul 28, 2022
Based on Stockfish neural network(similar to LcZero)

MarcoEngine Marco Engine - interesnaya neyronnaya shakhmatnaya set', kotoraya ispol'zuyet metod samoobucheniya(dostizheniye khoroshoy igy putem proboy

Marcus Kemaul 4 Mar 12, 2022
Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation

Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation. Generally, MAS methods register multiple atlases, i.e., medical images with corresponding labels, to a target i

NanYoMy 13 Oct 09, 2022
a dnn ai project to classify which food people are eating on audio recordings

Deep Learning - EAT Challenge About This project is part of an AI challenge of the DeepLearning course 2021 at the University of Augsburg. The objecti

Marco Tröster 1 Oct 24, 2021