Understanding the Difficulty of Training Transformers

Overview

License PWC

Admin

Understanding the Difficulty of Training Transformers

Guided by our analyses, we propose Adaptive Model Initialization (Admin), which successfully stabilizes previously-diverged Transformer training and achieves better performance, without introducing additional hyper-parameters. Admin is adapted for better half-precision stability and can be reparameterized into the original Transformer.

We are in an early-release beta. Expect some adventures and rough edges.

Table of Contents

Introduction

What complicates Transformer training?

In our study, we go beyond gradient vanishing and identify an amplification effect that substantially influences Transformer training. Specifically, for each layer in a multi-layer Transformer, heavy dependency on its residual branch makes training unstable, yet light dependency leads to sub-optimal performance.

Dependency and Amplification Effect

Our analysis starts from the observation that Pre-LN is more robust than Post-LN, whereas Post-LN typically leads to a better performance. As shown in Figure 1, we find these two variants have different layer dependency patterns.

With further exploration, we find that for a N-layer residual network, after updating its parameters W to W*, its outputs change is proportion to the dependency on residual branches.

Intuitively, since a larger output change indicates a more unsmooth loss surface, the large dependency complicates training. Moreover, we propose Admin (adaptive model initialization), which starts the training from the area with a smoother surface. More details can be found in our paper.

Quick Start Guide

Our implementation is based on the fairseq package (python 3.6, torch 1.5/1.6 are recommended). It can be installed by:

git clone https://github.com/LiyuanLucasLiu/Transforemr-Clinic.git
cd fairseq
pip install --editable .

The guidance for reproducing our results is available at:

Specifically, our implementation requires to first set --init-type adaptive-profiling and use one GPU for this profiling stage, then set --init-type adaptive and start training.

Citation

Please cite the following papers if you found our model useful. Thanks!

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han (2020). Understanding the Difficulty of Training Transformers. Proc. 2020 Conf. on Empirical Methods in Natural Language Processing (EMNLP'20).

@inproceedings{liu2020admin,
  title={Understanding the Difficulty of Training Transformers},
  author = {Liu, Liyuan and Liu, Xiaodong and Gao, Jianfeng and Chen, Weizhu and Han, Jiawei},
  booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020)},
  year={2020}
}

Xiaodong Liu, Kevin Duh, Liyuan Liu, and Jianfeng Gao (2020). Very Deep Transformers for Neural Machine Translation. arXiv preprint arXiv:2008.07772 (2020).

@inproceedings{liu_deep_2020,
 author = {Liu, Xiaodong and Duh, Kevin and Liu, Liyuan and Gao, Jianfeng},
 booktitle = {arXiv:2008.07772 [cs]},
 title = {Very Deep Transformers for Neural Machine Translation},
 year = {2020}
}
Owner
Liyuan Liu
Ph.D. Student @ DMG, UIUC
Liyuan Liu
CCF BDCI BERT系统调优赛题baseline(Pytorch版本)

CCF BDCI BERT系统调优赛题baseline(Pytorch版本) 此版本基于Pytorch后端的huggingface进行实现。由于此实现使用了Oneflow的dataloader作为数据读入的方式,因此也需要安装Oneflow。其它框架的数据读取可以参考OneflowDataloade

Ziqi Zhou 9 Oct 13, 2022
小布助手对话短文本语义匹配的一个baseline

oppo-text-match 小布助手对话短文本语义匹配的一个baseline 模型 参考:https://kexue.fm/archives/8213 base版本线下大概0.952,线上0.866(单模型,没做K-flod融合)。 训练 测试环境:tensorflow 1.15 + keras

苏剑林(Jianlin Su) 132 Dec 14, 2022
It analyze the sentiment of the user, whether it is postive or negative.

Sentiment-Analyzer-Tool It analyze the sentiment of the user, whether it is postive or negative. It uses streamlit library for creating this sentiment

Paras Patidar 18 Dec 17, 2022
HuggingTweets - Train a model to generate tweets

HuggingTweets - Train a model to generate tweets Create in 5 minutes a tweet generator based on your favorite Tweeter Make my own model with the demo

Boris Dayma 318 Jan 04, 2023
ADCS - Automatic Defect Classification System (ADCS) for SSMC

Table of Contents Table of Contents ADCS Overview Summary Operator's Guide Demo System Design System Logic Training Mode Production System Flow Folder

Tam Zher Min 2 Jun 24, 2022
Repositório da disciplina no semestre 2021-2

Avisos! Nenhum aviso! Compiladores 1 Este é o Git da disciplina Compiladores 1. Aqui ficará o material produzido em sala de aula assim como tarefas, w

6 May 13, 2022
Python package to easily retrain OpenAI's GPT-2 text-generating model on new texts

gpt-2-simple A simple Python package that wraps existing model fine-tuning and generation scripts for OpenAI's GPT-2 text generation model (specifical

Max Woolf 3.1k Jan 07, 2023
The first online catalogue for Arabic NLP datasets.

Masader The first online catalogue for Arabic NLP datasets. This catalogue contains 200 datasets with more than 25 metadata annotations for each datas

ARBML 94 Dec 26, 2022
Quick insights from Zoom meeting transcripts using Graph + NLP

Transcript Analysis - Graph + NLP This program extracts insights from Zoom Meeting Transcripts (.vtt) using TigerGraph and NLTK. In order to run this

Advit Deepak 7 Sep 17, 2022
COVID-19 Related NLP Papers

COVID-19 outbreak has become a global pandemic. NLP researchers are fighting the epidemic in their own way.

xcfeng 28 Oct 30, 2022
PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer

Cross-Covariance Image Transformer (XCiT) PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer L

Facebook Research 605 Jan 02, 2023
Journalism AI – Quotes extraction for modular journalism

Quote extraction for modular journalism (JournalismAI collab 2021)

Journalism AI collab 2021 207 Dec 25, 2022
Code for our paper "Transfer Learning for Sequence Generation: from Single-source to Multi-source" in ACL 2021.

TRICE: a task-agnostic transferring framework for multi-source sequence generation This is the source code of our work Transfer Learning for Sequence

THUNLP-MT 9 Jun 27, 2022
A simple chatbot based on chatterbot that you can use for anything has basic features

Chatbotium A simple chatbot based on chatterbot that you can use for anything has basic features. I have some errors Read the paragraph below: Known b

Herman 1 Feb 16, 2022
Code for the ACL 2021 paper "Structural Guidance for Transformer Language Models"

Structural Guidance for Transformer Language Models This repository accompanies the paper, Structural Guidance for Transformer Language Models, publis

International Business Machines 10 Dec 14, 2022
A repo for materials relating to the tutorial of CS-332 NLP

CS-332-NLP A repo for materials relating to the tutorial of CS-332 NLP Contents Tutorial 1: Introduction Corpus Regular expression Tokenization Tutori

Alok singh 9 Feb 15, 2022
Transformers implementation for Fall 2021 Clinic

Installation Download miniconda3 if not already installed You can check by running typing conda in command prompt. Use conda to create an environment

Aakash Tripathi 1 Oct 28, 2021
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 07, 2023
💬 Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants

Rasa Open Source Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual

Rasa 15.3k Dec 30, 2022