A crowdsourced dataset of dialogues grounded in social contexts involving utilization of commonsense.

Overview

Commonsense-Dialogues Dataset

We present Commonsense-Dialogues, a crowdsourced dataset of ~11K dialogues grounded in social contexts involving utilization of commonsense. The social contexts used were sourced from the train split of the SocialIQA dataset, a multiple-choice question-answering based social commonsense reasoning benchmark.

For the collection of the Commonsense-Dialogues dataset, each Turker was presented a social context and asked to write a dialogue of 4-6 turns between two people based on the event(s) described in the context. The Turker was asked to alternate between the roles of an individual referenced in the context and a 3rd party friend. See the following dialogues as examples:

    "1": {  # dialogue_id
        "context": "Sydney met Carson's mother for the first time last week. He liked her.",   # multiple individuals in the context: Sydney and Carson
        "speaker": "Sydney",   # role 1 = Sydney, role 2 = a third-person friend of Sydney
        "turns": [
            "I met Carson's mother last week for the first time.",
            "How was she?",
            "She turned out to be really nice. I like her.",
            "That's good to hear.",
            "It is, especially since Carson and I are getting serious.",
            "Well, at least you'll like your in-law if you guys get married."
        ]
    }

    "2": {
        "context": "Kendall had a party at Jordan's house but was found out to not have asked and just broke in.",
        "speaker": "Kendall",
        "turns": [
            "Did you hear about my party this weekend at Jordan\u2019s house?",
            "I heard it was amazing, but that you broke in.",
            "That was a misunderstanding, I had permission to be there.",
            "Who gave you permission?",
            "I talked to Jordan about it months ago before he left town to go to school, but he forgot to tell his roommates about it.",
            "Ok cool, I hope everything gets resolved."
        ]
    }

The data can be found in the /data directory of this repo. train.json has ~9K dialogues, valid.json and test.json have ~1K dialogues each. Since all the contexts were sourced from the train split of SocialIQA, it is imperative to note that any form of multi-task training and evaluation with Commonsense-Dialogues and SocialIQA must be done with caution to ensure fair and accurate conclusions.

Some statistics about the data are provided below:

Stat Train Valid Test
# of dialogues 9058 1157 1158
average # of turns in a dialogue 5.72 5.72 5.71
average # of words in a turn 12.4 12.4 12.2
# of distinct SocialIQA contexts used 3672 483 473
average # of dialogues for a SocialIQA context 2.46 2.395 2.45

Security

See CONTRIBUTING for more information.

License

This repository is licensed under the CC-BY-NC 4.0 License.

Citation

If you use this dataset, please cite the following paper:

@inproceedings{zhou-etal-2021-commonsense,
    title = "Commonsense-Focused Dialogues for Response Generation: An Empirical Study",
    author = "Zhou, Pei  and
      Gopalakrishnan, Karthik  and
      Hedayatnia, Behnam  and
      Kim, Seokhwan  and
      Pujara, Jay  and
      Ren, Xiang  and
      Liu, Yang  and
      Hakkani-Tur, Dilek",
    booktitle = "Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue",
    year = "2021",
    address = "Singapore and Online",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/2109.06427"
}

Note that the paper uses newly collected dialogues as well as those that were filtered from existing datasets. This repo contains our newly collected dialogues alone.

Owner
Alexa
Alexa
I label phrases on a scale of five values: negative, somewhat negative, neutral, somewhat positive, positive

I label phrases on a scale of five values: negative, somewhat negative, neutral, somewhat positive, positive. Obstacles like sentence negation, sarcasm, terseness, language ambiguity, and many others

1 Jan 13, 2022
Material for GW4SHM workshop, 16/03/2022.

GW4SHM Workshop Wednesday, 16th March 2022 (13:00 – 15:15 GMT): Presented by: Dr. Rhodri Nelson, Imperial College London Project website: https://www.

Devito Codes 1 Mar 16, 2022
Python interface for converting Penn Treebank trees to Stanford Dependencies and Universal Depenencies

PyStanfordDependencies Python interface for converting Penn Treebank trees to Universal Dependencies and Stanford Dependencies. Example usage Start by

David McClosky 64 May 08, 2022
Code for evaluating Japanese pretrained models provided by NTT Ltd.

japanese-dialog-transformers 日本語の説明文はこちら This repository provides the information necessary to evaluate the Japanese Transformer Encoder-decoder dialo

NTT Communication Science Laboratories 216 Dec 22, 2022
AI-Broad-casting - AI Broad casting with python

Basic Code 1. Use The Code Configuration Environment conda create -n code_base p

A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks

A Deep Learning NLP/NLU library by Intel® AI Lab Overview | Models | Installation | Examples | Documentation | Tutorials | Contributing NLP Architect

Intel Labs 2.9k Jan 02, 2023
Blackstone is a spaCy model and library for processing long-form, unstructured legal text

Blackstone Blackstone is a spaCy model and library for processing long-form, unstructured legal text. Blackstone is an experimental research project f

ICLR&D 579 Jan 08, 2023
Machine learning classifiers to predict American Sign Language .

ASL-Classifiers American Sign Language (ASL) is a natural language that serves as the predominant sign language of Deaf communities in the United Stat

Tarek idrees 0 Feb 08, 2022
Japanese synonym library

chikkarpy chikkarpyはchikkarのPython版です。 chikkarpy is a Python version of chikkar. chikkarpy は Sudachi 同義語辞書を利用し、SudachiPyの出力に同義語展開を追加するために開発されたライブラリです。

Works Applications 48 Dec 14, 2022
TruthfulQA: Measuring How Models Imitate Human Falsehoods

TruthfulQA: Measuring How Models Imitate Human Falsehoods

69 Dec 25, 2022
Legal text retrieval for python

legal-text-retrieval Overview This system contains 2 steps: generate training data containing negative sample found by mixture score of cosine(tfidf)

Nguyễn Minh Phương 22 Dec 06, 2022
Statistics and Mathematics for Machine Learning, Deep Learning , Deep NLP

Stat4ML Statistics and Mathematics for Machine Learning, Deep Learning , Deep NLP This is the first course from our trio courses: Statistics Foundatio

Omid Safarzadeh 83 Dec 29, 2022
nlpcommon is a python Open Source Toolkit for text classification.

nlpcommon nlpcommon, Python Text Tool. Guide Feature Install Usage Dataset Contact Cite Reference Feature nlpcommon is a python Open Source

xuming 3 May 29, 2022
Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for words based on their written form.

Neural G2P to portuguese language Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for words based on their written for

fluz 11 Nov 16, 2022
🏆 • 5050 most frequent words in 109 languages

🏆 Most Common Words Multilingual 5000 most frequent words in 109 languages. Uses wordfrequency.info as a source. 🔗 License source code license data

14 Nov 24, 2022
Ceaser-Cipher - The Caesar Cipher technique is one of the earliest and simplest method of encryption technique

Ceaser-Cipher The Caesar Cipher technique is one of the earliest and simplest me

Lateefah Ajadi 2 May 12, 2022
Code for "Generating Disentangled Arguments with Prompts: a Simple Event Extraction Framework that Works"

GDAP The code of paper "Code for "Generating Disentangled Arguments with Prompts: a Simple Event Extraction Framework that Works"" Event Datasets Prep

45 Oct 29, 2022
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023
QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries

Moment-DETR QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries Jie Lei, Tamara L. Berg, Mohit Bansal For dataset de

Jie Lei 雷杰 133 Dec 22, 2022
BERT score for text generation

BERTScore Automatic Evaluation Metric described in the paper BERTScore: Evaluating Text Generation with BERT (ICLR 2020). News: Features to appear in

Tianyi 1k Jan 08, 2023