Python implementation of R package breakDown

Overview

pyBreakDown

Python implementation of breakDown package (https://github.com/pbiecek/breakDown).

Docs: https://pybreakdown.readthedocs.io.

Requirements

Nothing fancy, just python 3.5.2+ and pip.

Installation

Install directly from github

    git clone https://github.com/bondyra/pyBreakDown
    cd ./pyBreakDown
    python3 setup.py install  # (or use pip install . instead)

Basic usage

Load dataset

from sklearn import datasets
x = datasets.load_boston()
data = x.data
feature_names = x.feature_names
y = x.target

Prepare model

import numpy as np
from sklearn import tree
model = tree.DecisionTreeRegressor()

Train model

train_data = data[1:300,:]
train_labels=y[1:300]
model = model.fit(train_data,y=train_labels)

Explain predictions on test data

#necessary imports
from pyBreakDown.explainer import Explainer
from pyBreakDown.explanation import Explanation
#make explainer object
exp = Explainer(clf=model, data=train_data, colnames=feature_names)
#make explanation object that contains all information
explanation = exp.explain(observation=data[302,:],direction="up")

Text form of explanations

#get information in text form
explanation.text()
Feature                  Contribution        Cumulative          
Intercept = 1            29.1                29.1                
RM = 6.495               -1.98               27.12               
TAX = 329.0              -0.2                26.92               
B = 383.61               -0.12               26.79               
CHAS = 0.0               -0.07               26.72               
NOX = 0.433              -0.02               26.7                
RAD = 7.0                0.0                 26.7                
INDUS = 6.09             0.01                26.71               
DIS = 5.4917             -0.04               26.66               
ZN = 34.0                0.01                26.67               
PTRATIO = 16.1           0.04                26.71               
AGE = 18.4               0.06                26.77               
CRIM = 0.09266           1.33                28.11               
LSTAT = 8.67             4.6                 32.71               
Final prediction                             32.71               
Baseline = 0
#customized text form
explanation.text(fwidth=40, contwidth=40, cumulwidth = 40, digits=4)
Feature                                 Contribution                            Cumulative                              
Intercept = 1                           29.1                                    29.1                                    
RM = 6.495                              -1.9826                                 27.1174                                 
TAX = 329.0                             -0.2                                    26.9174                                 
B = 383.61                              -0.1241                                 26.7933                                 
CHAS = 0.0                              -0.0686                                 26.7247                                 
NOX = 0.433                             -0.0241                                 26.7007                                 
RAD = 7.0                               0.0                                     26.7007                                 
INDUS = 6.09                            0.0074                                  26.708                                  
DIS = 5.4917                            -0.0438                                 26.6642                                 
ZN = 34.0                               0.0077                                  26.6719                                 
PTRATIO = 16.1                          0.0385                                  26.7104                                 
AGE = 18.4                              0.0619                                  26.7722                                 
CRIM = 0.09266                          1.3344                                  28.1067                                 
LSTAT = 8.67                            4.6037                                  32.7104                                 
Final prediction                                                                32.7104                                 
Baseline = 0

Visual form of explanations

explanation.visualize()

png

#customize height, width and dpi of plot
explanation.visualize(figsize=(8,5),dpi=100)

png

#for different baselines than zero
explanation = exp.explain(observation=data[302,:],direction="up",useIntercept=True)  # baseline==intercept
explanation.visualize(figsize=(8,5),dpi=100)

png

Owner
MI^2 DataLab
MI^2 DataLab
L2X - Code for replicating the experiments in the paper Learning to Explain: An Information-Theoretic Perspective on Model Interpretation.

L2X Code for replicating the experiments in the paper Learning to Explain: An Information-Theoretic Perspective on Model Interpretation at ICML 2018,

Jianbo Chen 113 Sep 06, 2022
A game theoretic approach to explain the output of any machine learning model.

SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allo

Scott Lundberg 18.3k Jan 08, 2023
Contrastive Explanation (Foil Trees), developed at TNO/Utrecht University

Contrastive Explanation (Foil Trees) Contrastive and counterfactual explanations for machine learning (ML) Marcel Robeer (2018-2020), TNO/Utrecht Univ

M.J. Robeer 41 Aug 29, 2022
A Practical Debugging Tool for Training Deep Neural Networks

Cockpit is a visual and statistical debugger specifically designed for deep learning!

31 Aug 14, 2022
A data-driven approach to quantify the value of classifiers in a machine learning ensemble.

Documentation | External Resources | Research Paper Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble. The

Benedek Rozemberczki 187 Dec 27, 2022
Quickly and easily create / train a custom DeepDream model

Dream-Creator This project aims to simplify the process of creating a custom DeepDream model by using pretrained GoogleNet models and custom image dat

56 Jan 03, 2023
Portal is the fastest way to load and visualize your deep neural networks on images and videos 🔮

Portal is the fastest way to load and visualize your deep neural networks on images and videos 🔮

Datature 243 Jan 05, 2023
Making decision trees competitive with neural networks on CIFAR10, CIFAR100, TinyImagenet200, Imagenet

Neural-Backed Decision Trees · Site · Paper · Blog · Video Alvin Wan, *Lisa Dunlap, *Daniel Ho, Jihan Yin, Scott Lee, Henry Jin, Suzanne Petryk, Sarah

Alvin Wan 556 Dec 20, 2022
Visualizer for neural network, deep learning, and machine learning models

Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX, TensorFlow Lite, Keras, Caffe, Darknet, ncnn,

Lutz Roeder 20.9k Dec 28, 2022
Bias and Fairness Audit Toolkit

The Bias and Fairness Audit Toolkit Aequitas is an open-source bias audit toolkit for data scientists, machine learning researchers, and policymakers

Data Science for Social Good 513 Jan 06, 2023
An intuitive library to add plotting functionality to scikit-learn objects.

Welcome to Scikit-plot Single line functions for detailed visualizations The quickest and easiest way to go from analysis... ...to this. Scikit-plot i

Reiichiro Nakano 2.3k Dec 31, 2022
Python implementation of R package breakDown

pyBreakDown Python implementation of breakDown package (https://github.com/pbiecek/breakDown). Docs: https://pybreakdown.readthedocs.io. Requirements

MI^2 DataLab 41 Mar 17, 2022
Model analysis tools for TensorFlow

TensorFlow Model Analysis TensorFlow Model Analysis (TFMA) is a library for evaluating TensorFlow models. It allows users to evaluate their models on

1.2k Dec 26, 2022
A collection of infrastructure and tools for research in neural network interpretability.

Lucid Lucid is a collection of infrastructure and tools for research in neural network interpretability. We're not currently supporting tensorflow 2!

4.5k Jan 07, 2023
A library for debugging/inspecting machine learning classifiers and explaining their predictions

ELI5 ELI5 is a Python package which helps to debug machine learning classifiers and explain their predictions. It provides support for the following m

2.6k Dec 30, 2022
Pytorch Feature Map Extractor

MapExtrackt Convolutional Neural Networks Are Beautiful We all take our eyes for granted, we glance at an object for an instant and our brains can ide

Lewis Morris 40 Dec 07, 2022
A ultra-lightweight 3D renderer of the Tensorflow/Keras neural network architectures

A ultra-lightweight 3D renderer of the Tensorflow/Keras neural network architectures

Souvik Pratiher 16 Nov 17, 2021
tensorboard for pytorch (and chainer, mxnet, numpy, ...)

tensorboardX Write TensorBoard events with simple function call. The current release (v2.1) is tested on anaconda3, with PyTorch 1.5.1 / torchvision 0

Tzu-Wei Huang 7.5k Jan 07, 2023
Implementation of linear CorEx and temporal CorEx.

Correlation Explanation Methods Official implementation of linear correlation explanation (linear CorEx) and temporal correlation explanation (T-CorEx

Hrayr Harutyunyan 34 Nov 15, 2022
Python Library for Model Interpretation/Explanations

Skater Skater is a unified framework to enable Model Interpretation for all forms of model to help one build an Interpretable machine learning system

Oracle 1k Dec 27, 2022