Python implementation of R package breakDown

Overview

pyBreakDown

Python implementation of breakDown package (https://github.com/pbiecek/breakDown).

Docs: https://pybreakdown.readthedocs.io.

Requirements

Nothing fancy, just python 3.5.2+ and pip.

Installation

Install directly from github

    git clone https://github.com/bondyra/pyBreakDown
    cd ./pyBreakDown
    python3 setup.py install  # (or use pip install . instead)

Basic usage

Load dataset

from sklearn import datasets
x = datasets.load_boston()
data = x.data
feature_names = x.feature_names
y = x.target

Prepare model

import numpy as np
from sklearn import tree
model = tree.DecisionTreeRegressor()

Train model

train_data = data[1:300,:]
train_labels=y[1:300]
model = model.fit(train_data,y=train_labels)

Explain predictions on test data

#necessary imports
from pyBreakDown.explainer import Explainer
from pyBreakDown.explanation import Explanation
#make explainer object
exp = Explainer(clf=model, data=train_data, colnames=feature_names)
#make explanation object that contains all information
explanation = exp.explain(observation=data[302,:],direction="up")

Text form of explanations

#get information in text form
explanation.text()
Feature                  Contribution        Cumulative          
Intercept = 1            29.1                29.1                
RM = 6.495               -1.98               27.12               
TAX = 329.0              -0.2                26.92               
B = 383.61               -0.12               26.79               
CHAS = 0.0               -0.07               26.72               
NOX = 0.433              -0.02               26.7                
RAD = 7.0                0.0                 26.7                
INDUS = 6.09             0.01                26.71               
DIS = 5.4917             -0.04               26.66               
ZN = 34.0                0.01                26.67               
PTRATIO = 16.1           0.04                26.71               
AGE = 18.4               0.06                26.77               
CRIM = 0.09266           1.33                28.11               
LSTAT = 8.67             4.6                 32.71               
Final prediction                             32.71               
Baseline = 0
#customized text form
explanation.text(fwidth=40, contwidth=40, cumulwidth = 40, digits=4)
Feature                                 Contribution                            Cumulative                              
Intercept = 1                           29.1                                    29.1                                    
RM = 6.495                              -1.9826                                 27.1174                                 
TAX = 329.0                             -0.2                                    26.9174                                 
B = 383.61                              -0.1241                                 26.7933                                 
CHAS = 0.0                              -0.0686                                 26.7247                                 
NOX = 0.433                             -0.0241                                 26.7007                                 
RAD = 7.0                               0.0                                     26.7007                                 
INDUS = 6.09                            0.0074                                  26.708                                  
DIS = 5.4917                            -0.0438                                 26.6642                                 
ZN = 34.0                               0.0077                                  26.6719                                 
PTRATIO = 16.1                          0.0385                                  26.7104                                 
AGE = 18.4                              0.0619                                  26.7722                                 
CRIM = 0.09266                          1.3344                                  28.1067                                 
LSTAT = 8.67                            4.6037                                  32.7104                                 
Final prediction                                                                32.7104                                 
Baseline = 0

Visual form of explanations

explanation.visualize()

png

#customize height, width and dpi of plot
explanation.visualize(figsize=(8,5),dpi=100)

png

#for different baselines than zero
explanation = exp.explain(observation=data[302,:],direction="up",useIntercept=True)  # baseline==intercept
explanation.visualize(figsize=(8,5),dpi=100)

png

Owner
MI^2 DataLab
MI^2 DataLab
Auralisation of learned features in CNN (for audio)

AuralisationCNN This repo is for an example of auralisastion of CNNs that is demonstrated on ISMIR 2015. Files auralise.py: includes all required func

Keunwoo Choi 39 Nov 19, 2022
tensorboard for pytorch (and chainer, mxnet, numpy, ...)

tensorboardX Write TensorBoard events with simple function call. The current release (v2.1) is tested on anaconda3, with PyTorch 1.5.1 / torchvision 0

Tzu-Wei Huang 7.5k Jan 07, 2023
PyTorch implementation of DeepDream algorithm

neural-dream This is a PyTorch implementation of DeepDream. The code is based on neural-style-pt. Here we DeepDream a photograph of the Golden Gate Br

121 Nov 05, 2022
Code for visualizing the loss landscape of neural nets

Visualizing the Loss Landscape of Neural Nets This repository contains the PyTorch code for the paper Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer

Tom Goldstein 2.2k Dec 30, 2022
Interactive convnet features visualization for Keras

Quiver Interactive convnet features visualization for Keras The quiver workflow Video Demo Build your model in keras model = Model(...) Launch the vis

Keplr 1.7k Dec 21, 2022
Portal is the fastest way to load and visualize your deep neural networks on images and videos 🔮

Portal is the fastest way to load and visualize your deep neural networks on images and videos 🔮

Datature 243 Jan 05, 2023
Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Webis 42 Aug 14, 2022
A python library for decision tree visualization and model interpretation.

dtreeviz : Decision Tree Visualization Description A python library for decision tree visualization and model interpretation. Currently supports sciki

Terence Parr 2.4k Jan 02, 2023
A collection of infrastructure and tools for research in neural network interpretability.

Lucid Lucid is a collection of infrastructure and tools for research in neural network interpretability. We're not currently supporting tensorflow 2!

4.5k Jan 07, 2023
A collection of research papers and software related to explainability in graph machine learning.

A collection of research papers and software related to explainability in graph machine learning.

AstraZeneca 1.9k Dec 26, 2022
Visualizer for neural network, deep learning, and machine learning models

Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX, TensorFlow Lite, Keras, Caffe, Darknet, ncnn,

Lutz Roeder 20.9k Dec 28, 2022
Visualization toolkit for neural networks in PyTorch! Demo -->

FlashTorch A Python visualization toolkit, built with PyTorch, for neural networks in PyTorch. Neural networks are often described as "black box". The

Misa Ogura 692 Dec 29, 2022
Pytorch Feature Map Extractor

MapExtrackt Convolutional Neural Networks Are Beautiful We all take our eyes for granted, we glance at an object for an instant and our brains can ide

Lewis Morris 40 Dec 07, 2022
L2X - Code for replicating the experiments in the paper Learning to Explain: An Information-Theoretic Perspective on Model Interpretation.

L2X Code for replicating the experiments in the paper Learning to Explain: An Information-Theoretic Perspective on Model Interpretation at ICML 2018,

Jianbo Chen 113 Sep 06, 2022
FairML - is a python toolbox auditing the machine learning models for bias.

======== FairML: Auditing Black-Box Predictive Models FairML is a python toolbox auditing the machine learning models for bias. Description Predictive

Julius Adebayo 338 Nov 09, 2022
Interpretability and explainability of data and machine learning models

AI Explainability 360 (v0.2.1) The AI Explainability 360 toolkit is an open-source library that supports interpretability and explainability of datase

1.2k Dec 29, 2022
Lime: Explaining the predictions of any machine learning classifier

lime This project is about explaining what machine learning classifiers (or models) are doing. At the moment, we support explaining individual predict

Marco Tulio Correia Ribeiro 10.3k Jan 01, 2023
Logging MXNet data for visualization in TensorBoard.

Logging MXNet Data for Visualization in TensorBoard Overview MXBoard provides a set of APIs for logging MXNet data for visualization in TensorBoard. T

Amazon Web Services - Labs 327 Dec 05, 2022
treeinterpreter - Interpreting scikit-learn's decision tree and random forest predictions.

TreeInterpreter Package for interpreting scikit-learn's decision tree and random forest predictions. Allows decomposing each prediction into bias and

Ando Saabas 720 Dec 22, 2022
⬛ Python Individual Conditional Expectation Plot Toolbox

⬛ PyCEbox Python Individual Conditional Expectation Plot Toolbox A Python implementation of individual conditional expecation plots inspired by R's IC

Austin Rochford 140 Dec 30, 2022