PyTorch implementation of our paper How robust are discriminatively trained zero-shot learning models?

Overview

How robust are discriminatively trained zero-shot learning models?

This repository contains the PyTorch implementation of our paper How robust are discriminatively trained zero-shot learning models? published at Elsevier Image and Vision Computing.

Paper Highlights

In this paper, as a continuation of our previous work, we focus on the corruption robustness of discriminative ZSL models. Highlights of our paper is as follows.

  1. In order to facilitate the corruption robustness analyses, we curate and release the first benchmark datasets CUB-C, SUN-C and AWA2-C.
  2. We show that, compared to fully supervised settings, class imbalance and model strength are severe issues effecting the robustness behaviour of ZSL models.
  3. Combined with our previous work, we define and show the pseudo robustness effect, where absolute metrics may not always reflect the robustness behaviour of a model. This effect is present for adversarial examples, but not for corruptions.
  4. We show that recent augmentation methods designed for better corruption robustness can also increase the clean accuracy of ZSL models, and set new strong baselines.
  5. We show in detail that unseen and seen classes are affected disproportionately. We also show zero-shot and generalized zero-shot performances are affected differently.

Dataset Highlights

We release CUB-C, SUN-C and AWA2-C, which are corrupted versions of three popular ZSL benchmarks. Based on the previous work, we introduce several corruptions in various severities to test the generalization ability of ZSL models. More details on the design process and corruptions can be found in the paper.

Repository Contents and Requirements

This repository contains the code to reproduce our results and the necessary scripts to generate the corruption datasets. You should follow the below steps before running the code.

  • You can use the provided environment yml (or pip requirements.txt) file to install dependencies.
  • Download the pretrained models here and place them under /model folders.
  • Download AWA2, SUN and CUB datasets. Please note we operate on raw images, not the features provided with the datasets.
  • Download the data split/attribute files here and extract the contents into /data folder.
  • Change the necessary paths in the json file.

The code in this repository lets you evaluate our provided models with AWA2, CUB-C and SUN-C. If you want to use corruption datasets, you can take generate_corruption.py file and use it in your own project.

Additional Content

In addition to the paper, we release our supplementary file supp.pdf. It includes the following.

1. Average errors (ZSL and GZSL) for each dataset per corruption category. These are for the ALE model, and should be used to weight the errors when calculating mean corruption errors. For comparison, this essentially replaces AlexNet error weighting used for ImageNet-C dataset.

2. Mean corruption errors (ZSL and GZSL) of the ALE model, for seen/unseen/harmonic and ZSL top-1 accuracies, on each dataset. These results include the MCE values for original ALE and ALE with five defense methods used in our paper (i.e. total-variance minimization, spatial smoothing, label smoothing, AugMix and ANT). These values can be used as baseline scores when comparing the robustness of your method.

Running the code

After you've downloaded the necessary dataset files, you can run the code by simply

python run.py

For changing the experimental parameters, refer to params.json file. Details on json file parameters can be found in the code. By default, running run.py looks for a params.json file in the folder. If you want to run the code with another json file, use

python run.py --json_path path_to_json

Citation

If you find our code or paper useful in your research, please consider citing the following papers.

@inproceedings{yucel2020eccvw,
  title={A Deep Dive into Adversarial Robustness in Zero-Shot Learning},
  author={Yucel, Mehmet Kerim and Cinbis, Ramazan Gokberk and Duygulu, Pinar},
  booktitle = {ECCV Workshop on Adversarial Robustness in the Real World}
  pages={3--21},
  year={2020},
  organization={Springer}
}

@article{yucel2022imavis,
title = {How robust are discriminatively trained zero-shot learning models?},
journal = {Image and Vision Computing},
pages = {104392},
year = {2022},
issn = {0262-8856},
doi = {https://doi.org/10.1016/j.imavis.2022.104392},
url = {https://www.sciencedirect.com/science/article/pii/S026288562200021X},
author = {Mehmet Kerim Yucel and Ramazan Gokberk Cinbis and Pinar Duygulu},
keywords = {Zero-shot learning, Robust generalization, Adversarial robustness},
}

Acknowledgements

This code base has borrowed several implementations from here, here and it is a continuation of our previous work's repository.

Owner
Mehmet Kerim Yucel
Mehmet Kerim Yucel
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
Point Cloud Registration Network

PCRNet: Point Cloud Registration Network using PointNet Encoding Source Code Author: Vinit Sarode and Xueqian Li Paper | Website | Video | Pytorch Imp

ViNiT SaRoDe 59 Nov 19, 2022
kullanışlı ve işinizi kolaylaştıracak bir araç

Hey merhaba! işte çok sorulan sorularının cevabı ve sorunlarının çözümü; Soru= İçinde var denilen birçok şeyi göremiyorum bunun sebebi nedir? Cevap= B

Sexettin 16 Dec 17, 2022
Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition

Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition Official implementation of the Efficient Conforme

Maxime Burchi 145 Dec 30, 2022
PyTorch implementation of MICCAI 2018 paper "Liver Lesion Detection from Weakly-labeled Multi-phase CT Volumes with a Grouped Single Shot MultiBox Detector"

Grouped SSD (GSSD) for liver lesion detection from multi-phase CT Note: the MICCAI 2018 paper only covers the multi-phase lesion detection part of thi

Sang-gil Lee 36 Oct 12, 2022
A modular, research-friendly framework for high-performance and inference of sequence models at many scales

T5X T5X is a modular, composable, research-friendly framework for high-performance, configurable, self-service training, evaluation, and inference of

Google Research 1.1k Jan 08, 2023
This is the code for CVPR 2021 oral paper: Jigsaw Clustering for Unsupervised Visual Representation Learning

JigsawClustering Jigsaw Clustering for Unsupervised Visual Representation Learning Pengguang Chen, Shu Liu, Jiaya Jia Introduction This project provid

DV Lab 73 Sep 18, 2022
The AWS Certified SysOps Administrator

The AWS Certified SysOps Administrator – Associate (SOA-C02) exam is intended for system administrators in a cloud operations role who have at least 1 year of hands-on experience with deployment, man

Aiden Pearce 32 Dec 11, 2022
We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Facebook Research 42 Dec 09, 2022
Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Neural Networks.

Dynamic-Graphs-Construction Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Ne

11 Dec 14, 2022
EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration

EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration Ruikang Xu, Zeyu Xiao, Jie Huang, Yueyi Zhang, Zhiwei Xiong. EDPN: Enhanced Deep Pyra

69 Dec 15, 2022
Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection

Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection abstract:Unlike 2D object detection where all RoI featur

DK. Zhang 2 Oct 07, 2022
Official PyTorch implementation of "RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on" (IJCAI-ECAI 2022)

RMGN-VITON RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on In IJCAI-ECAI 2022(short oral). [Paper] [Supplementary Material] Abstra

27 Dec 01, 2022
Efficient and intelligent interactive segmentation annotation software

Efficient and intelligent interactive segmentation annotation software

294 Dec 30, 2022
Official PyTorch implementation for paper "Efficient Two-Stage Detection of Human–Object Interactions with a Novel Unary–Pairwise Transformer"

UPT: Unary–Pairwise Transformers This repository contains the official PyTorch implementation for the paper Frederic Z. Zhang, Dylan Campbell and Step

Frederic Zhang 109 Dec 20, 2022
Boostcamp CV Serving For Python

Boostcamp-CV-Serving Prerequisites MySQL GCP Cloud Storage GCP key file Sentry Streamlit Cloud Secrets: .streamlit/secrets.toml #DO NOT SHARE THIS I

Jungwon Seo 19 Feb 22, 2022
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 463 Dec 09, 2022
Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study

Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study Supplementary Materials for Kentaro Matsuura, Junya Honda, Imad

Kentaro Matsuura 4 Nov 01, 2022
Dilated Convolution for Semantic Image Segmentation

Multi-Scale Context Aggregation by Dilated Convolutions Introduction Properties of dilated convolution are discussed in our ICLR 2016 conference paper

Fisher Yu 764 Dec 26, 2022
The Multi-Mission Maximum Likelihood framework (3ML)

PyPi Conda The Multi-Mission Maximum Likelihood framework (3ML) A framework for multi-wavelength/multi-messenger analysis for astronomy/astrophysics.

The Multi-Mission Maximum Likelihood (3ML) 62 Dec 30, 2022