Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study

Overview

Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study

Supplementary Materials for Kentaro Matsuura, Junya Honda, Imad El Hanafi, Takashi Sozu, Kentaro Sakamaki "Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study" Statistics in Medicine 202x; (doi:xxxxx)

How to Setup

We recommend using Linux or WSL on Windows, because the Ray package in Python is more stable on Linux. For example, in Ubuntu 20.04 (Python 3.8 was already installed), I was able to install the necessary packages with the following commands.

Install Ray

sudo apt update
sudo apt upgrade
sudo apt install python3-pip
sudo pip3 install tensorflow numpy pandas gym
sudo apt install cmake
sudo pip3 install -U ray
sudo pip3 install 'ray[rllib]'

Install R and RPy2

echo -e "\n## For R package"  | sudo tee -a /etc/apt/sources.list
echo "deb https://cloud.r-project.org/bin/linux/ubuntu $(lsb_release -cs)-cran40/" | sudo tee -a /etc/apt/sources.list
sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys E298A3A825C0D65DFD57CBB651716619E084DAB9
sudo apt update
sudo apt install make g++ r-base
sudo apt install libxml2-dev libssl-dev libcurl4-openssl-dev
sudo pip3 install rpy2

Install DoseFinding package in R

install.packages('DoseFinding')

How to Use

Change simulation settings

To change the simulation settings, it is necessary to understand MCPMod/envs/MCPModEnv.py. This part is a bit difficult because of the interaction between R and Python. Therefore, we have a plan to create an R package to use our method easily.

Obtain adaptive allocation rule

To obtain RL-MAE by learning, please run learn_RL-MAE.py like:

nohup python3 learn_RL-MAE.py > std.log 2> err.log &

To obtain other RL-methods, please change the reward_type in line 25 in learn_RL-MAE.py to something like score_TD, then run the modified file.

When we used c2-standard-4(vCPUx4, RAM16GB) on Google Cloud Platform, the learning was completed within a day.

Simulate single trial

After the learning, we will obtain a checkpoint in ~/ray_results/PPO_MCPMod-v0_[datetime]-[xxx]/checkpoint-[yyy]/. To simulate single trial using the obtained rule, please move the checkpoint files (checkpoint and checkpoint.tune_metadata) in the directory to checkpoint/ in this repository, and rename the files as you like (see the example files). Then, please run simulate-single-trial_RL-MAE.py like:

python3 simulate-single-trial_RL-MAE.py
Owner
Kentaro Matsuura
Kentaro Matsuura
Applying CLIP to Point Cloud Recognition.

PointCLIP: Point Cloud Understanding by CLIP This repository is an official implementation of the paper 'PointCLIP: Point Cloud Understanding by CLIP'

Renrui Zhang 175 Dec 24, 2022
Embeddinghub is a database built for machine learning embeddings.

Embeddinghub is a database built for machine learning embeddings.

Featureform 1.2k Jan 01, 2023
face_recognization (FaceNet) + TFHE (HNP) + hand_face_detection (Mediapipe)

SuperControlSystem Face_Recognization (FaceNet) 面部识别 (FaceNet) Fully Homomorphic Encryption over the Torus (HNP) 环面全同态加密 (TFHE) Hand_Face_Detection (M

liziyu0104 2 Dec 30, 2021
A Tensorflow based library for Time Series Modelling with Gaussian Processes

Markovflow Documentation | Tutorials | API reference | Slack What does Markovflow do? Markovflow is a Python library for time-series analysis via prob

Secondmind Labs 24 Dec 12, 2022
Collection of common code that's shared among different research projects in FAIR computer vision team.

fvcore fvcore is a light-weight core library that provides the most common and essential functionality shared in various computer vision frameworks de

Meta Research 1.5k Jan 07, 2023
Code for Referring Image Segmentation via Cross-Modal Progressive Comprehension, CVPR2020.

CMPC-Refseg Code of our CVPR 2020 paper Referring Image Segmentation via Cross-Modal Progressive Comprehension. Shaofei Huang*, Tianrui Hui*, Si Liu,

spyflying 55 Dec 01, 2022
BERTMap: A BERT-Based Ontology Alignment System

BERTMap: A BERT-based Ontology Alignment System Important Notices The relevant paper was accepted in AAAI-2022. Arxiv version is available at: https:/

KRR 36 Dec 24, 2022
The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation.

TME The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation. Our implementation is based on TG

2 Feb 10, 2022
A deep learning model for style-specific music generation.

DeepJ: A model for style-specific music generation https://arxiv.org/abs/1801.00887 Abstract Recent advances in deep neural networks have enabled algo

Henry Mao 704 Nov 23, 2022
A Temporal Extension Library for PyTorch Geometric

Documentation | External Resources | Datasets PyTorch Geometric Temporal is a temporal (dynamic) extension library for PyTorch Geometric. The library

Benedek Rozemberczki 1.9k Jan 07, 2023
Learning Tracking Representations via Dual-Branch Fully Transformer Networks

Learning Tracking Representations via Dual-Branch Fully Transformer Networks DualTFR ⭐ We achieves the runner-ups for both VOT2021ST (short-term) and

phiphi 19 May 04, 2022
Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather

LiDAR fog simulation Created by Martin Hahner at the Computer Vision Lab of ETH Zurich. This is the official code release of the paper Fog Simulation

Martin Hahner 110 Dec 30, 2022
FS-Mol: A Few-Shot Learning Dataset of Molecules

FS-Mol is A Few-Shot Learning Dataset of Molecules, containing molecular compounds with measurements of activity against a variety of protein targets. The dataset is presented with a model evaluation

Microsoft 114 Dec 15, 2022
TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling

TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling This is the official code release for the paper 'TiP-Adapter: Training-fre

peng gao 189 Jan 04, 2023
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 09, 2023
Local Attention - Flax module for Jax

Local Attention - Flax Autoregressive Local Attention - Flax module for Jax Install $ pip install local-attention-flax Usage from jax import random fr

Phil Wang 16 Jun 16, 2022
PiRapGenerator - Make anyone rap the digits of pi

PiRapGenerator Make anyone rap the digits of pi (sample files are of Ted Nivison

7 Oct 02, 2022
PyTorch Lightning implementation of Automatic Speech Recognition

lasr Lightening Automatic Speech Recognition An MIT License ASR research library, built on PyTorch-Lightning, for developing end-to-end ASR models. In

Soohwan Kim 40 Sep 19, 2022
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
Honours project, on creating a depth estimation map from two stereo images of featureless regions

image-processing This module generates depth maps for shape-blocked-out images Install If working with anaconda, then from the root directory: conda e

2 Oct 17, 2022