Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning

Related tags

Text Data & NLPgensen
Overview

GenSen

Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning

Sandeep Subramanian, Adam Trischler, Yoshua Bengio & Christopher Pal

ICLR 2018

About

GenSen is a technique to learn general purpose, fixed-length representations of sentences via multi-task training. These representations are useful for transfer and low-resource learning. For details please refer to our ICLR paper.

Code

We provide a PyTorch implementation of our paper along with pre-trained models as well as code to evaluate these models on a variety of transfer learning benchmarks.

Requirements

  • Python 2.7 (Python 3 compatibility coming soon)
  • PyTorch 0.2 or 0.3
  • nltk
  • h5py
  • numpy
  • scikit-learn

Usage

Setting up Models & pre-trained word vecotrs

You download our pre-trained models and set up pre-trained word vectors for vocabulary expansion by

cd data/models
bash download_models.sh
cd ../embedding
bash glove2h5.sh
Using a pre-trained model to extract sentence representations.

You can use our pre-trained models to extract the last hidden state or all hidden states of our multi-task GRU. Additionally, you can concatenate the output of multiple models to replicate the numbers in our paper.

from gensen import GenSen, GenSenSingle

gensen_1 = GenSenSingle(
    model_folder='./data/models',
    filename_prefix='nli_large_bothskip',
    pretrained_emb='./data/embedding/glove.840B.300d.h5'
)
reps_h, reps_h_t = gensen_1.get_representation(
    sentences, pool='last', return_numpy=True, tokenize=True
)
print reps_h.shape, reps_h_t.shape
  • The input to get_representation is sentences, which should be a list of strings. If your strings are not pre-tokenized, then set tokenize=True to use the NLTK tokenizer before computing representations.
  • reps_h (batch_size x seq_len x 2048) contains the hidden states for all words in all sentences (padded to the max length of sentences)
  • reps_h_t (batch_size x 2048) contains only the last hidden state for all sentences in the minibatch

GenSenSingle will return the output of a single model nli_large_bothskip (+STN +Fr +De +NLI +L +STP). You can concatenate the output of multiple models by creating a GenSen instance with multiple GenSenSingle instances, as follows:

gensen_2 = GenSenSingle(
    model_folder='./data/models',
    filename_prefix='nli_large_bothskip_parse',
    pretrained_emb='./data/embedding/glove.840B.300d.h5'
)
gensen = GenSen(gensen_1, gensen_2)
reps_h, reps_h_t = gensen.get_representation(
    sentences, pool='last', return_numpy=True, tokenize=True
)
  1. reps_h (batch_size x seq_len x 4096) contains the hidden states for all words in all sentences (padded to the max length of sentences)
  2. reps_h_t (batch_size x 4096) contains only the last hidden state for all sentences in the minibatch

The model will produce a fixed-length vector for each sentence as well as the hidden states corresponding to each word in every sentence (padded to max sentence length). You can also return a numpy array instead of a torch.FloatTensor by setting return_numpy=True.

Vocabulary Expansion

If you have a specific domain for which you want to compute representations, you can call vocab_expansion on instances of the GenSenSingle or GenSen class simply by gensen.vocab_expansion(vocab) where vocab is a list of unique words in the new domain. This will learn a linear mapping from the provided pretrained embeddings (which have a significantly larger vocabulary) provided to the space of gensen's word vectors. For an example of how this is used in an actual setting, please refer to gensen_senteval.py.

Training a model from scratch

To train a model from scratch, simply run train.py with an appropriate JSON config file. An example config is provided in example_config.json. To continue training, just relaunch the same scripy with load_dir=auto in the config file.

To download some of the data required to train a GenSen model, run:

bash get_data.sh

Note that this script can take a while to complete since it downloads, tokenizes and lowercases a fairly large En-Fr corpus. If you already have these parallel corpora processed, you can replace the paths to these files in the provided example_config.json

Some of the data used in our work is no longer publicly available (BookCorpus - see http://yknzhu.wixsite.com/mbweb) or has an LDC license associated (Penn Treebank). As a result, the example_config.json script will only train on Multilingual NMT and NLI, since they are publicly available. To use models trained on all tasks, please use our available pre-trained models.

Additional Sequence-to-Sequence transduction tasks can be added trivally to the multi-task framework by editing the json config file with more tasks.

python train.py --config example_config.json

To use the default settings in example_config.json you will need a GPU with atleast 16GB of memory (such as a P100), to train on smaller GPUs, you may need to reduce the batch size.

Note that if "load_dir" is set to auto, the script will resume from the last saved model in "save_dir".

Creating a GenSen model from a trained multi-task model

Once you have a trained model, we can throw away all of the decoders and just retain the encoder used to compute sentence representations.

You can do this by running

python create_gensen.py -t <path_to_trained_model> -s <path_to_save_encoder> -n <name_of_encoder>

Once you have done this, you can load this model just like any of the pre-trained models by specifying the model_folder as path_to_save_encoder and filename_prefix as name_of_encoder in the above command.

your_gensen = GenSenSingle(
    model_folder='<path_to_save_encoder>',
    filename_prefix='<name_of_encoder>',
    pretrained_emb='./data/embedding/glove.840B.300d.h5'
)

Transfer Learning Evaluations

We used the SentEval toolkit to run most of our transfer learning experiments. To replicate these numbers, clone their repository and follow setup instructions. Once complete, copy gensen_senteval.py and gensen.py into their examples folder and run the following commands to reproduce different rows in Table 2 of our paper. Note: Please set the path to the pretrained glove embeddings (glove.840B.300d.h5) and model folder as appropriate.

(+STN +Fr +De +NLI +L +STP)      python gensen_senteval.py --prefix_1 nli_large --prefix_2 nli_large_bothskip
(+STN +Fr +De +NLI +2L +STP)     python gensen_senteval.py --prefix_1 nli_large_bothskip --prefix_2 nli_large_bothskip_2layer
(+STN +Fr +De +NLI +L +STP +Par) python gensen_senteval.py --prefix_1 nli_large_bothskip_parse --prefix_2 nli_large_bothskip

Reference

@article{subramanian2018learning,
title={Learning general purpose distributed sentence representations via large scale multi-task learning},
author={Subramanian, Sandeep and Trischler, Adam and Bengio, Yoshua and Pal, Christopher J},
journal={arXiv preprint arXiv:1804.00079},
year={2018}
}
Owner
Maluuba Inc.
A @Microsoft company
Maluuba Inc.
Mapping a variable-length sentence to a fixed-length vector using BERT model

Are you looking for X-as-service? Try the Cloud-Native Neural Search Framework for Any Kind of Data bert-as-service Using BERT model as a sentence enc

Han Xiao 11.1k Jan 01, 2023
NLP tool to extract emotional phrase from tweets 🤩

Emotional phrase extractor Extract phrase in the given text that is used to express the sentiment. Capturing sentiment in language is important in the

Shahul ES 38 Oct 17, 2022
BERT score for text generation

BERTScore Automatic Evaluation Metric described in the paper BERTScore: Evaluating Text Generation with BERT (ICLR 2020). News: Features to appear in

Tianyi 1k Jan 08, 2023
A simple visual front end to the Maya UE4 RBF plugin delivered with MetaHumans

poseWrangler Overview PoseWrangler is a simple UI to create and edit pose-driven relationships in Maya using the MayaUE4RBF plugin. This plugin is dis

Christopher Evans 105 Dec 18, 2022
Implementation of COCO-LM, Correcting and Contrasting Text Sequences for Language Model Pretraining, in Pytorch

COCO LM Pretraining (wip) Implementation of COCO-LM, Correcting and Contrasting Text Sequences for Language Model Pretraining, in Pytorch. They were a

Phil Wang 44 Jul 28, 2022
This repository contains the code for "Generating Datasets with Pretrained Language Models".

Datasets from Instructions (DINO 🦕 ) This repository contains the code for Generating Datasets with Pretrained Language Models. The paper introduces

Timo Schick 154 Jan 01, 2023
Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022
Conditional probing: measuring usable information beyond a baseline

Conditional probing: measuring usable information beyond a baseline

John Hewitt 20 Dec 15, 2022
A repo for materials relating to the tutorial of CS-332 NLP

CS-332-NLP A repo for materials relating to the tutorial of CS-332 NLP Contents Tutorial 1: Introduction Corpus Regular expression Tokenization Tutori

Alok singh 9 Feb 15, 2022
Contains descriptions and code of the mini-projects developed in various programming languages

TexttoSpeechAndLanguageTranslator-project introduction A pleasant application where the client will be given buttons like play,reset and exit. The cli

Adarsh Reddy 1 Dec 22, 2021
Rhasspy 673 Dec 28, 2022
Connectionist Temporal Classification (CTC) decoding algorithms: best path, beam search, lexicon search, prefix search, and token passing. Implemented in Python.

CTC Decoding Algorithms Update 2021: installable Python package Python implementation of some common Connectionist Temporal Classification (CTC) decod

Harald Scheidl 736 Jan 03, 2023
lightweight, fast and robust columnar dataframe for data analytics with online update

streamdf Streamdf is a lightweight data frame library built on top of the dictionary of numpy array, developed for Kaggle's time-series code competiti

23 May 19, 2022
Pervasive Attention: 2D Convolutional Networks for Sequence-to-Sequence Prediction

This is a fork of Fairseq(-py) with implementations of the following models: Pervasive Attention - 2D Convolutional Neural Networks for Sequence-to-Se

Maha 490 Dec 15, 2022
Understanding the Difficulty of Training Transformers

Admin Understanding the Difficulty of Training Transformers Guided by our analyses, we propose Adaptive Model Initialization (Admin), which successful

Liyuan Liu 300 Dec 29, 2022
Pytorch code for ICRA'21 paper: "Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation"

Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation This repository is the pytorch implementation of our paper: Hierarchical Cr

44 Jan 06, 2023
Reformer, the efficient Transformer, in Pytorch

Reformer, the Efficient Transformer, in Pytorch This is a Pytorch implementation of Reformer https://openreview.net/pdf?id=rkgNKkHtvB It includes LSH

Phil Wang 1.8k Dec 30, 2022
TunBERT is the first release of a pre-trained BERT model for the Tunisian dialect using a Tunisian Common-Crawl-based dataset.

TunBERT is the first release of a pre-trained BERT model for the Tunisian dialect using a Tunisian Common-Crawl-based dataset. TunBERT was applied to three NLP downstream tasks: Sentiment Analysis (S

InstaDeep Ltd 72 Dec 09, 2022
A Flask Sentiment Analysis API, with visual implementation

The Sentiment Analysis Api was created using python flask module,it allows users to parse a text or sentence throught the (?text) arguement, then view the sentiment analysis of that sentence. It can

Ifechukwudeni Oweh 10 Jul 17, 2022
A natural language modeling framework based on PyTorch

Overview PyText is a deep-learning based NLP modeling framework built on PyTorch. PyText addresses the often-conflicting requirements of enabling rapi

Meta Research 6.4k Jan 08, 2023