Maha is a text processing library specially developed to deal with Arabic text.

Overview



CI Documentation Status codecov Discord Downloads License PyPI version Code style: black Checked with mypy PyPI - Python Version

An Arabic text processing library intended for use in NLP applications


Maha is a text processing library specially developed to deal with Arabic text. The beta version can be used to clean and parse text, files, and folders with or without streaming capability.

If you need help or want to discuss topics related to Maha, feel free to reach out to our Discord server. If you would like to submit a bug report or feature request, please open an issue.

Installation

Simply run the following to install Maha:

pip install mahad # pronounced maha d

For source installation, check the documentation.

Overview

Check out the overview section in the documentation to get started with Maha.

Documentation

Documentation are hosted at ReadTheDocs.

Contributing

Maha welcomes and encourages everyone to contribute. Contributions are always appreciated. Feel free to take a look at our contribution guidelines in the documentation.

License

Maha is BSD-licensed.

Comments
  • Time: Add the ability to parse Hijri dates

    Time: Add the ability to parse Hijri dates

    What does this pull request change?

    Closes #27.

    Status (please check what you already did):

    • [x] added some tests for the functionality
    • [ ] updated the documentation
    • [x] tox passes
    new feature highlight 
    opened by TRoboto 6
  • Added distance to dimension parsing

    Added distance to dimension parsing

    What does this pull request change?

    Resolves #15.

    Status (please check what you already did):

    • [x] added some tests for the functionality
    • [x] updated the documentation
    • [x] tox passes
    parsing highlight 
    opened by TRoboto 5
  • Introduce :mod:`~.datasets` module and the first dataset, `names`, with over 40,000 unique names

    Introduce :mod:`~.datasets` module and the first dataset, `names`, with over 40,000 unique names

    What does this pull request change?

    This PR introduces a new datasets module that offers an interface for all upcoming datasets. A new dataset, names, is released along with the module. It comprises 44,161 unique names with descriptions and name origin included for most names.

    Link to updated docs: https://maha--40.org.readthedocs.build/en/40/overview.html#datasets

    Status (please check what you already did):

    • [x] added some tests for the functionality
    • [x] updated the documentation
    • [x] tox passes
    new feature highlight 
    opened by TRoboto 4
  • Add pyupgrade to pre-commit and upgrade to future-style type annotations

    Add pyupgrade to pre-commit and upgrade to future-style type annotations

    What does this pull request change?

    Upgrades to new type annotations style.

    Status (please check what you already did):

    • [ ] added some tests for the functionality
    • [ ] updated the documentation
    • [x] tox passes
    maintenance 
    opened by TRoboto 3
  • Deprecate and remove `datasets` module and host datasets on Hugging Face instead

    Deprecate and remove `datasets` module and host datasets on Hugging Face instead

    What does this pull request change?

    • Removes datasets module.
    • Datasets are now hosted here

    Status (please check what you already did):

    • [ ] added some tests for the functionality
    • [ ] updated the documentation
    • [x] tox passes
    breaking changes deprecation 
    opened by TRoboto 3
  • Add the ability to parse names from text

    Add the ability to parse names from text

    What does this pull request change?

    Adds #24. Depends on #40

    Status (please check what you already did):

    • [x] added some tests for the functionality
    • [x] updated the documentation
    • [x] tox passes
    new feature highlight 
    opened by TRoboto 3
  • Add a deprecation system

    Add a deprecation system

    What does this pull request change?

    • Closes #23
    • Adds 3 deprecation decorators; for functions, for parameters, for default parameters.

    Status (please check what you already did):

    • [x] added some tests for the functionality
    • [ ] updated the documentation
    • [x] tox passes
    development 
    opened by saedx1 3
  • Prepare for the next release of Maha (v0.3.0)

    Prepare for the next release of Maha (v0.3.0)

    This is an auto-generated PR to prepare for the next release of Maha. The following changes were automatically made:

    • Generated changelogs for release v0.3.0.
    • Bumped pypi version to v0.3.0.
    • Updated the citation information.
    opened by github-actions[bot] 2
  • Ordinal: Add support to `بعد` in ordinal parsing

    Ordinal: Add support to `بعد` in ordinal parsing

    What does this pull request change?

    Closes #48.

    Status (please check what you already did):

    • [x] added some tests for the functionality
    • [ ] updated the documentation
    • [x] tox passes
    new feature 
    opened by TRoboto 2
  • Numeral: Add support for hierarchical parsing

    Numeral: Add support for hierarchical parsing

    What does this pull request change?

    Closes #25

    Status (please check what you already did):

    • [x] added some tests for the functionality
    • [ ] updated the documentation
    • [x] tox passes
    new feature 
    opened by TRoboto 2
  • Prepare for the next release of Maha (v0.2.0)

    Prepare for the next release of Maha (v0.2.0)

    This is an auto-generated PR to prepare for the next release of Maha. The following changes were automatically made:

    • Generated changelogs for release v0.2.0.
    • Bumped pypi version to v0.2.0.
    • Updated the citation information.
    opened by github-actions[bot] 2
  • Update ci.yml

    Update ci.yml

    Check the support for python 3,10

    What does this pull request change? It checks if the library is supporting python 3.10.

    • ...

    Status (please check what you already did):

    • [ ] added some tests for the functionality
    • [ ] updated the documentation
    • [ ] tox passes
    opened by PAIN-BARHAM 1
  • Add the option to ignore Harakat when removing or replacing

    Add the option to ignore Harakat when removing or replacing

    What problem are you trying to solve?

    Currently, the cleaner functions do not consider two strings similar if they have different Harakat/diacritics, which is the correct behavior. However, it would be great if the user had the option to ignore Harakat when comparing strings.

    Examples (if relevant)

    Current:

    >> from maha.cleaners.functions import remove
    >> output = remove("يُدَرِّسُ اللُّغَةَ العَرَبِيَّةَ الفُصْحَى", custom_expressions=r"اللغة")
    >> output
    يُدَرِّسُ اللُّغَةَ العَرَبِيَّةَ الفُصْحَى
    

    Suggested:

    >> from maha.cleaners.functions import remove
    >> remove("يُدَرِّسُ اللُّغَةَ العَرَبِيَّةَ الفُصْحَى", custom_expressions=r"اللغة", ignore_harakat=True)
    >> output
    يُدَرِّسُ العَرَبِيَّةَ الفُصْحَى
    

    Definition of Done

    • It must adhere to the coding style used in the defined cleaner functions.
    • The implementation should cover most use cases.
    • Adding tests
    feature request 
    opened by xaleel 1
  • Wrong parsed name using name dimension

    Wrong parsed name using name dimension

    What happened?

    The name parser extracted wrong name likes : بي, شكرا.

    Example: text: أريد البحث في سجل الإنفاق الخاص بي [Dimension(body=بي, value=بي, start=32, end=34, dimension_type=DimensionType.NAME)]

    I expect to extract the names on the name dataset only.

    Python version

    3.8

    What operating system are you using?

    Linux

    Code to reproduce the issue

    >>> from maha.parsers.functions import parse_dimension
    >>> text = `أريد البحث في سجل الإنفاق الخاص بي`
    >>> extracted = parse_dimension(text, names=True)
    [Dimension(body=بي, value=بي, start=32, end=34, dimension_type=DimensionType.NAME)]
    

    Relevant log output

    No response

    bug parsing 
    opened by PAIN-BARHAM 0
  • Add feature to parse duration period

    Add feature to parse duration period

    What problem are you trying to solve?

    Parsing the duration from the text that has the difference between the two dates.

    Examples (if relevant)

    >>> from maha.parsers.functions import parse_dimension
    >>> output = parse_dimension('عن ربع نمو سكان العالم القديم والتحضر بين 1700 و 1900 ميلادي', duration=True)[0].value
    >>> output
    DurationValue(values=[ValueUnit(value=200, unit=<DurationUnit.YEARS: 7>)], normalized_unit=<DurationUnit.SECONDS: 1>)
    
    

    Definition of Done

    • It must adhere to the coding style used in the defined dimensions, duration dimension.
    • The implementation should cover most use cases.
    • Adding tests
    feature request 
    opened by PAIN-BARHAM 1
  • Adding the parser functionality to Processors

    Adding the parser functionality to Processors

    What problem are you trying to solve?

    Adding the parser functionality to Processors to parse different dimensions.

    Examples (if relevant)

    >>> from pathlib import Path
    >>> import maha
    >>> resource_path = Path(maha.__file__).parents[1] / "sample_data/tweets.txt"
    >>> data = resource_path.read_text()
    >>> print(data)
    
    الساعة الآن 12:00 في اسبانيا 🇪🇸, انتهى بشكل رسمي عقد الأسطورة ليو ميسي مع برشلونة . .
    طبعا بكونو حاطين المكيف ع٣ مئوية وخود تقلبات وبرد وحر وCNS وزعيق المراقب وألف نيلة وقر فتحت اشوف درجة الحرارة هتبقي كام يو الامتحان لقيتها ٤٢ والامتحان الساعه ١ فعايز انورماليز اننا ننزل بالفالنه الحمالات Hot fac
    يسعدلي مساكم ❤🌹 شرح كلمة zwa هالمنشور رح تلاقو (zwar) سهل و لذيذ (aber) ناقصو شوية ملح وكزبر #منقو
    مـعلش استحملوني ب الاصفر هالفتره 💛 #ريشـه هههههههه
    لما حد يسالني بتختفي كتير لية =..
    زيِّنوا ليلة الجمع بالصلاة على النَّبِيِّ ﷺ" ❤
    #Windows11 is on the horizon. What feature are you looking forward to
    Get vaccinate #savethesaviour
    Today I am beginning project on 10 days duratio #30daysofcod #DEVCommunit
    
    >>> from maha.processors import FileProcessor
    >>> proc = FileProcessor(resource_path)
    >>> parsed = proc.parse_dimension(time=True)
    [Dimension(body=الساعة الآن 12:00, value=TimeValue(years=0, months=0, days=0, hours=0, minutes=0, seconds=0, hour=12, minute=0, second=0, microsecond=0), start=0, end=17, dimension_type=DimensionType.TIME),
     Dimension(body=الساعه ١, value=TimeValue(hour=1, minute=0, second=0, microsecond=0), start=238, end=246, dimension_type=DimensionType.TIME),
     Dimension(body=ليلة, value=TimeValue(am_pm='PM'), start=491, end=495, dimension_type=DimensionType.TIME)]
    
    

    Definition of Done

    • It must adhere to the coding style.
    • The implementation should cover most use cases.
    • Adding tests.
    good first issue feature request parsing 
    opened by PAIN-BARHAM 0
Releases(v0.3.0)
Owner
Mohammad Al-Fetyani
Machine Learning Engineer
Mohammad Al-Fetyani
Practical Machine Learning with Python

Master the essential skills needed to recognize and solve complex real-world problems with Machine Learning and Deep Learning by leveraging the highly popular Python Machine Learning Eco-system.

Dipanjan (DJ) Sarkar 2k Jan 08, 2023
Modified GPT using average pooling to reduce the softmax attention memory constraints.

NLP-GPT-Upsampling This repository contains an implementation of Open AI's GPT Model. In particular, this implementation takes inspiration from the Ny

WD 1 Dec 03, 2021
Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

41 Jan 03, 2023
Bpe algorithm can finetune tokenizer - Bpe algorithm can finetune tokenizer

"# bpe_algorithm_can_finetune_tokenizer" this is an implyment for https://github

张博 1 Feb 02, 2022
Utilize Korean BERT model in sentence-transformers library

ko-sentence-transformers 이 프로젝트는 KoBERT 모델을 sentence-transformers 에서 보다 쉽게 사용하기 위해 만들어졌습니다. Ko-Sentence-BERT-SKTBERT 프로젝트에서는 KoBERT 모델을 sentence-trans

Junghyun 40 Dec 20, 2022
Generating new names based on trends in data using GPT2 (Transformer network)

MLOpsNameGenerator Overall Goal The goal of the project is to develop a model that is capable of creating Pokémon names based on its description, usin

Gustav Lang Moesmand 2 Jan 10, 2022
An open-source NLP library: fast text cleaning and preprocessing.

An open-source NLP library: fast text cleaning and preprocessing

Iaroslav 21 Mar 18, 2022
Chinese segmentation library

What is loso? loso is a Chinese segmentation system written in Python. It was developed by Victor Lin ( Fang-Pen Lin 82 Jun 28, 2022

InferSent sentence embeddings

InferSent InferSent is a sentence embeddings method that provides semantic representations for English sentences. It is trained on natural language in

Facebook Research 2.2k Dec 27, 2022
Baseline code for Korean open domain question answering(ODQA)

Open-Domain Question Answering(ODQA)는 다양한 주제에 대한 문서 집합으로부터 자연어 질의에 대한 답변을 찾아오는 task입니다. 이때 사용자 질의에 답변하기 위해 주어지는 지문이 따로 존재하지 않습니다. 따라서 사전에 구축되어있는 Knowl

VUMBLEB 69 Nov 04, 2022
pyupbit 라이브러리를 활용하여 upbit에서 비트코인을 자동매매하는 코드입니다. 조코딩 유튜브 채널에서 자세한 강의 영상을 보실 수 있습니다.

파이썬 비트코인 투자 자동화 강의 코드 by 유튜브 조코딩 채널 pyupbit 라이브러리를 활용하여 upbit 거래소에서 비트코인 자동매매를 하는 코드입니다. 파일 구성 test.py : 잔고 조회 (1강) backtest.py : 백테스팅 코드 (2강) bestK.p

조코딩 JoCoding 186 Dec 29, 2022
A Streamlit web app that generates Rick and Morty stories using GPT2.

Rick and Morty Story Generator This project uses a pre-trained GPT2 model, which was fine-tuned on Rick and Morty transcripts, to generate new stories

₸ornike 33 Oct 13, 2022
Automatically search Stack Overflow for the command you want to run

stackshell Automatically search Stack Overflow (and other Stack Exchange sites) for the command you want to ru Use the up and down arrows to change be

circuit10 22 Oct 27, 2021
A Paper List for Speech Translation

Keyword: Speech Translation, Spoken Language Processing, Natural Language Processing

138 Dec 24, 2022
To create a deep learning model which can explain the content of an image in the form of speech through caption generation with attention mechanism on Flickr8K dataset.

To create a deep learning model which can explain the content of an image in the form of speech through caption generation with attention mechanism on Flickr8K dataset.

Ragesh Hajela 0 Feb 08, 2022
An attempt to map the areas with active conflict in Ukraine using open source twitter data.

Live Action Map (LAM) An attempt to use open source data on Twitter to map areas with active conflict. Right now it is used for the Ukraine-Russia con

Kinshuk Dua 171 Nov 21, 2022
This converter will create the exact measure for your cappuccino recipe from the grandiose Rafaella Ballerini!

About CappuccinoJs This converter will create the exact measure for your cappuccino recipe from the grandiose Rafaella Ballerini! Este conversor criar

Arthur Ottoni Ribeiro 48 Nov 15, 2022
Chinese named entity recognization (bert/roberta/macbert/bert_wwm with Keras)

Chinese named entity recognization (bert/roberta/macbert/bert_wwm with Keras)

2 Jul 05, 2022
Just a Basic like Language for Zeno INC

zeno-basic-language Just a Basic like Language for Zeno INC This is written in 100% python. this is basic language like language. so its not for big p

Voidy Devleoper 1 Dec 18, 2021