Predicting future trajectories of people in cameras of novel scenarios and views.

Overview

Pedestrian Trajectory Prediction

Predicting future trajectories of pedestrians in cameras of novel scenarios and views.

This repository contains the code and models for the following ECCV'20 paper:

SimAug: Learning Robust Representatios from Simulation for Trajectory Prediction Junwei Liang, Lu Jiang, Alexander Hauptmann

Our Pipeline

Input: could be from a streaming camera or saved videos.

Detection: we used a pre-trained model called YOLO (You Only Look Once) to perform object detection, it uses convolutional neural networks to provide real-time object detection, it is popular for its speed and accuracy.

Tracking: we used a pre-trained model called Deep SORT (Simple Online and Realtime Tracking), it uses deep learning to perform object tracking in videos. It works by computing deep features for every bounding box and using the similarity between deep features to also factor into the tracking logic. It is known to work perfectly with YOLO and also popular for its speed and accuracy.

Resizing: at this step, we get the frames and resize them to the required shape which is 1920 X 1080.

Semantic Segmentation: we used a pre-trained model called Deep Lab (Deep Labeling) an algorithm made by Google, to perform the semantic segmentation task, this model works by assigning a predicted value for each pixel in an image or video with the help of deep neural network support. It performs a pixel-wise classification where each pixel is labeled by predicted value encoding its semantic class.

SimAug Model: Simulation as Augmentation, is a novel simulation data augmentation method for trajectory prediction. It augments the representation such that it is robust to the variances in semantic scenes and camera views, it predicts the trajectory in unseen camera views.

Predicted Trajectory: The output of the proposed pipeline.

Code

Fisrt you need to install packages according to the configuration file:

$ pip install -r requirements.txt

Running on video

Then download the deeplab ADE20k model(used for Semantic Segmentation):

$ wget http://download.tensorflow.org/models/deeplabv3_xception_ade20k_train_2018_05_29.tar.gz
$ tar -zxvf deeplabv3_xception_ade20k_train_2018_05_29.tar.gz

Then download SimAug-trained model:

$ wget https://next.cs.cmu.edu/data/packed_models_eccv2020.tgz
$ tar -zxvf packed_models_eccv2020.tgz

Run the pretrained YOLOv5 & DEEPSORT

get the annotations on a sample video many_people.mp4 from yolo and deepsort + resized images to 1920 x 1080

dataset_resize,changelst , annotation = detect('many_people.mp4')

Prepare the annotation

  • get box centre x,y for each person (traj_data)
  • person_box_data : boxes coordinates for all persons
  • other_box_data : boxes of other objects in the same frame with each targeted person
traj_data, person_box_data, other_box_data  = prepared_data_sdd(annotation,changelst)

Run the segmentation model

model_path= 'deeplabv3_xception_ade20k_train/frozen_inference_graph.pb'
seg_output= extract_scene_seg(dataset_resize,model_path,every =100)

Prepare all data for the SimAug model

making npz which contanins arrays for details of the segmentation with annotations and person ids
data=To_npz(8,12,traj_data,seg_output)
np.savez("prepro_fold1/data_test.npz", **data)

Test SimAug-Trained Model

!python Code/test.py prepro_fold1/ packed_models/ best_simaug_model \
--wd 0.001 --runId 0 --obs_len 8 --pred_len 12 --emb_size 32 --enc_hidden_size 256 \
--dec_hidden_size 256 --activation_func tanh --keep_prob 1.0 --num_epochs 30 \
--batch_size 12 --init_lr 0.3 --use_gnn --learning_rate_decay 0.95 --num_epoch_per_decay 5.0 \
--grid_loss_weight 1.0 --grid_reg_loss_weight 0.5 --save_period 3000 \
--scene_h 36 --scene_w 64 --scene_conv_kernel 3 --scene_conv_dim 64 \
--scene_grid_strides 2,4 --use_grids 1,0 --val_grid_num 0 --gpuid 0 --load_best \
--save_output sdd_out.p
To Run the pipeline from here

Demo

ITI.Moving.vehicle.mp4

Results

We capture streaming video that contains 1628 frames, processing time for stages is

• Yolo & Deep SORT: 20.7 f/s

• DeepLabv3: 4.66 f/s

• SimAug: 12.8 f/s

Video_Name Grid_acc minADE minFDE
Moving-ITI 0.6098 22.132 39.271

Dependencies

• Python 3.6 ; TensorFlow 1.15.0 ; Pytorch 1.7 ; Cuda 10

Code Contributors

References

@inproceedings{liang2020simaug,
  title={SimAug: Learning Robust Representations from Simulation for Trajectory Prediction},
  author={Liang, Junwei and Jiang, Lu and Hauptmann, Alexander},
  booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
  month = {August},
  year={2020}
}
Meta-meta-learning with evolution and plasticity

Evolve plastic networks to be able to automatically acquire novel cognitive (meta-learning) tasks

5 Jun 28, 2022
VOLO: Vision Outlooker for Visual Recognition

VOLO: Vision Outlooker for Visual Recognition, arxiv This is a PyTorch implementation of our paper. We present Vision Outlooker (VOLO). We show that o

Sea AI Lab 876 Dec 09, 2022
Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data

1 Meta-FDMIxup Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data. (ACM MM 2021) paper News! the rep

Fu Yuqian 44 Nov 18, 2022
Stock-Prediction - prediction of stock market movements using sentiment analysis and deep learning.

Stock-Prediction- In this project, we aim to enhance the prediction of stock market movements using sentiment analysis and deep learning. We divide th

5 Jan 25, 2022
ICNet for Real-Time Semantic Segmentation on High-Resolution Images, ECCV2018

ICNet for Real-Time Semantic Segmentation on High-Resolution Images by Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping Shi, Jiaya Jia, details a

Hengshuang Zhao 594 Dec 31, 2022
Robustness between the worst and average case

Robustness between the worst and average case A repository that implements intermediate robustness training and evaluation from the NeurIPS 2021 paper

CMU Locus Lab 16 Dec 02, 2022
OneFlow is a performance-centered and open-source deep learning framework.

OneFlow OneFlow is a performance-centered and open-source deep learning framework. Latest News Version 0.5.0 is out! First class support for eager exe

OneFlow 4.2k Jan 07, 2023
Bringing sanity to world of messed-up data

Sanitize sanitize is a Python module for making sure various things (e.g. HTML) are safe to use. It was originally written by Mark Pilgrim and is dist

Alireza Savand 63 Oct 26, 2021
Covid19-Forecasting - An interactive website that tracks, models and predicts COVID-19 Cases

Covid-Tracker This is an interactive website that tracks, models and predicts CO

Adam Lahmadi 1 Feb 01, 2022
PyTorch implementation of PP-LCNet: A Lightweight CPU Convolutional Neural Network

PyTorch implementation of PP-LCNet Reproduction of PP-LCNet architecture as described in PP-LCNet: A Lightweight CPU Convolutional Neural Network by C

Quan Nguyen (Fly) 47 Nov 02, 2022
CLIPort: What and Where Pathways for Robotic Manipulation

CLIPort CLIPort: What and Where Pathways for Robotic Manipulation Mohit Shridhar, Lucas Manuelli, Dieter Fox CoRL 2021 CLIPort is an end-to-end imitat

246 Dec 11, 2022
Implementation of Hierarchical Transformer Memory (HTM) for Pytorch

Hierarchical Transformer Memory (HTM) - Pytorch Implementation of Hierarchical Transformer Memory (HTM) for Pytorch. This Deepmind paper proposes a si

Phil Wang 63 Dec 29, 2022
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
Code for CoMatch: Semi-supervised Learning with Contrastive Graph Regularization

CoMatch: Semi-supervised Learning with Contrastive Graph Regularization (Salesforce Research) This is a PyTorch implementation of the CoMatch paper [B

Salesforce 107 Dec 14, 2022
计算机视觉中用到的注意力模块和其他即插即用模块PyTorch Implementation Collection of Attention Module and Plug&Play Module

PyTorch实现多种计算机视觉中网络设计中用到的Attention机制,还收集了一些即插即用模块。由于能力有限精力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交issue或者进行PR。

PJDong 599 Dec 23, 2022
PolyTrack: Tracking with Bounding Polygons

PolyTrack: Tracking with Bounding Polygons Abstract In this paper, we present a novel method called PolyTrack for fast multi-object tracking and segme

Gaspar Faure 13 Sep 15, 2022
Stroke-predictions-ml-model - Machine learning model to predict individuals chances of having a stroke

stroke-predictions-ml-model machine learning model to predict individuals chance

Alex Volchek 1 Jan 03, 2022
Implementation of SegNet: A Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-Wise Labelling

Caffe SegNet This is a modified version of Caffe which supports the SegNet architecture As described in SegNet: A Deep Convolutional Encoder-Decoder A

Alex Kendall 1.1k Jan 02, 2023
clustimage is a python package for unsupervised clustering of images.

clustimage The aim of clustimage is to detect natural groups or clusters of images. Image recognition is a computer vision task for identifying and ve

Erdogan Taskesen 52 Jan 02, 2023
Pytorch implementation of DeePSiM

Pytorch implementation of DeePSiM

1 Nov 05, 2021