PolyTrack: Tracking with Bounding Polygons

Overview

PolyTrack: Tracking with Bounding Polygons

Abstract

In this paper, we present a novel method called PolyTrack for fast multi-object tracking and segmentation using bounding polygons. Polytrack detects objects by producing heatmaps of their center keypoint. For each of them, a rough segmentation is done by computing a bounding polygon over each instance instead of the traditional bounding box. Tracking is done by taking two consecutive frames as input and computing a center offset for each object detected in the first frame to predict their location in the second frame. A Kalman filter is also applied to reduce the number of ID switches. Since our target application is automated driving systems, we apply our method on urban environment videos. We train and evaluate PolyTrack on the MOTS and KITTIMOTS dataset.

Example results

Video examples from the KITTI MOTS test set:

Model

An overview of the PolyTrack architecture. The network takes as input the image at time t, I(t), the image at time t-1, I(t-1), as well as the heatmap at time t-1, H(t-1). Features are produced by the backbone and then used by five different network heads. The center heatmaps head is used for detecting and classifying objects, the polygon head is used for the segmentation part, the depth head is used to produce a relative depth between objects, the tracking head is used to produce an offset between frames at time t-1 and time t and finally the offset head is used for correctly upsampling images.

a) Generated Heatmap b) Generated Output

a): The center heatmap produced by the network to detect objects, b): the output of our method: a bounding polygon for each object, a class label, a track id as well as an offset from the previous frame.

Installation

Please refer to INSTALL.md for installation instructions.

Folder organization

  • /experiments: bash files to start repeat our experiments, you can also find an example of how to perform a demo.
  • /src/lib : contains the code needed to generate and train a model
  • /src/tools : contains tools relevant to different datasets, you can find the files we used to generate our ground truth here.
  • /data : not included in the git repo, but contains images from the dataset with the following structure:
  • /data/MOTS/test/ : contains test images
  • /data/MOTS/train/ : contains train images
  • /data/MOTS/seqmaps/ : contains seqmaps
  • /data/MOTS/json_gt/ : contains ground truth files generated by our tools

License

PolyTrack is released under the MIT License. PolyTrack is based upon CenterTrack and CenterPoly. Portions of the code are borrowed from CornerNet (hourglassnet, loss functions), dla (DLA network) and DCNv2(deformable convolutions). Please refer to the original License of these projects (See NOTICE).

Owner
Gaspar Faure
Gaspar Faure
AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models

AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models Descrip

Angel de Paula 1 Jun 08, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
This is the code of paper ``Contrastive Coding for Active Learning under Class Distribution Mismatch'' with python.

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

21 Dec 22, 2022
Tutorial to set up TensorFlow Object Detection API on the Raspberry Pi

A tutorial showing how to set up TensorFlow's Object Detection API on the Raspberry Pi

Evan 1.1k Dec 26, 2022
Providing the solutions for high-frequency trading (HFT) strategies using data science approaches (Machine Learning) on Full Orderbook Tick Data.

Modeling High-Frequency Limit Order Book Dynamics Using Machine Learning Framework to capture the dynamics of high-frequency limit order books. Overvi

Chang-Shu Chung 1.3k Jan 07, 2023
A real world application of a Recurrent Neural Network on a binary classification of time series data

What is this This is a real world application of a Recurrent Neural Network on a binary classification of time series data. This project includes data

Josep Maria Salvia Hornos 2 Jan 30, 2022
Simple ray intersection library similar to coldet - succedeed by libacc

Ray Intersection This project offers a header only acceleration structure library including implementations for a BVH- and KD-Tree. Applications may i

Nils Moehrle 29 Jun 23, 2022
Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays

Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays In this repo, you will find the instructions on how to requ

Intelligent Vision Research Lab 4 Jul 21, 2022
Pytorch implementation for "Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets" (ECCV 2020 Spotlight)

Distribution-Balanced Loss [Paper] The implementation of our paper Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets (

Tong WU 304 Dec 22, 2022
Encode and decode text application

Text Encoder and Decoder Encode and decode text in many ways using this application! Encode in: ASCII85 Base85 Base64 Base32 Base16 Url MD5 Hash SHA-1

Alice 1 Feb 12, 2022
Camera-caps - Examine the camera capabilities for V4l2 cameras

camera-caps This is a graphical user interface over the v4l2-ctl command line to

Jetsonhacks 25 Dec 26, 2022
🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series

🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series (optical and radar) The PASTIS Dataset Dataset presentation PASTIS is a benchmark dataset for

86 Jan 04, 2023
Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

RNN-for-Joint-NLU Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

Kim SungDong 194 Dec 28, 2022
EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks

EncT5 (Unofficial) Pytorch Implementation of EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks About Finetune T5 model for classification & r

Jangwon Park 34 Jan 01, 2023
Reproduces the results of the paper "Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations".

Finite basis physics-informed neural networks (FBPINNs) This repository reproduces the results of the paper Finite Basis Physics-Informed Neural Netwo

Ben Moseley 65 Dec 28, 2022
A free, multiplatform SDK for real-time facial motion capture using blendshapes, and rigid head pose in 3D space from any RGB camera, photo, or video.

mocap4face by Facemoji mocap4face by Facemoji is a free, multiplatform SDK for real-time facial motion capture based on Facial Action Coding System or

Facemoji 591 Dec 27, 2022
PyBrain - Another Python Machine Learning Library.

PyBrain -- the Python Machine Learning Library =============================================== INSTALLATION ------------ Quick answer: make sure you

2.8k Dec 31, 2022
BirdCLEF 2021 - Birdcall Identification 4th place solution

BirdCLEF 2021 - Birdcall Identification 4th place solution My solution detail kaggle discussion Inference Notebook (best submission) Environment Use K

tattaka 42 Jan 02, 2023
Project page of the paper 'Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network' (ECCVW 2018)

EPSR (Enhanced Perceptual Super-resolution Network) paper This repo provides the test code, pretrained models, and results on benchmark datasets of ou

Subeesh Vasu 78 Nov 19, 2022