We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview

Overview

This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which will be presented as a poster paper in NeurIPS'21.

In this work, we propose a regularized self-labeling approach that combines regularization and self-training methods for improving the generalization and robustness properties of fine-tuning. Our approach includes two components:

  • First, we encode layer-wise regularization to penalize the model weights at different layers of the neural net.
  • Second, we add self-labeling that relabels data points based on current neural net's belief and reweights data points whose confidence is low.

Requirements

To install requirements:

pip install -r requirements.txt

Data Preparation

We use seven image datasets in our paper. We list the link for downloading these datasets and describe how to prepare data to run our code below.

  • Aircrafts: download and extract into ./data/aircrafts
    • remove the class 257.clutter out of the data directory
  • CUB-200-2011: download and extract into ./data/CUB_200_2011/
  • Caltech-256: download and extract into ./data/caltech256/
  • Stanford-Cars: download and extract into ./data/StanfordCars/
  • Stanford-Dogs: download and extract into ./data/StanfordDogs/
  • Flowers: download and extract into ./data/flowers/
  • MIT-Indoor: download and extract into ./data/Indoor/

Our code automatically handles the split of the datasets.

Usage

Our algorithm (RegSL) interpolates between layer-wise regularization and self-labeling. Run the following commands for conducting experiments in this paper.

Fine-tuning ResNet-101 on image classification tasks.

python train_constraint.py --model ResNet101 \
    --config configs/config_constraint_indoor.json \
    --reg_method constraint --reg_norm frob \
    --reg_extractor 0.136809975858091 --reg_predictor 6.40780158171339 --scale_factor 2.52883770643206\
    --device 1

python train_constraint.py --model ResNet101 \
    --config configs/config_constraint_aircrafts.json \
    --reg_method constraint --reg_norm frob \
    --reg_extractor 1.18330556653284 --reg_predictor 5.27713618808711 --scale_factor 1.27679969876201\
    --device 1

python train_constraint.py --model ResNet101 \
    --config configs/config_constraint_birds.json \
    --reg_method constraint --reg_norm frob \
    --reg_extractor 0.204403908747731 --reg_predictor 23.7850606577679 --scale_factor 4.73803591794678\
    --device 1

python train_constraint.py --model ResNet101 \
    --config configs/config_constraint_caltech.json \
    --reg_method constraint --reg_norm frob \
    --reg_extractor 0.0867998872549272 --reg_predictor 9.4552942790218 --scale_factor 1.1785989596144\
    --device 1

python train_constraint.py --model ResNet101 \
    --config configs/config_constraint_cars.json \
    --reg_method constraint --reg_norm frob \
    --reg_extractor 1.3340347414257 --reg_predictor 8.26940794089601 --scale_factor 3.47676759842434\
    --device 1

python train_constraint.py --model ResNet101 \
    --config configs/config_constraint_dogs.json \
    --reg_method constraint --reg_norm frob \
    --reg_extractor 0.0561320847651626 --reg_predictor 4.46281825974388 --scale_factor 1.58722606909531\
    --device 1

python train_constraint.py --model ResNet101 \
    --config configs/config_constraint_flower.json \
    --reg_method constraint --reg_norm frob \
    --reg_extractor 0.131991042311165 --reg_predictor 10.7674132173309 --scale_factor 4.98010215976503\
    --device 1

Fine-tuning ResNet-18 under label noise.

python train_label_noise.py --config configs/config_constraint_indoor.json --model ResNet18 \
    --reg_method constraint --reg_norm frob \
    --reg_extractor 7.80246991703043 --reg_predictor 14.077402847906 \
    --noise_rate 0.2 --train_correct_label --reweight_epoch 5 --reweight_temp 2.0 --correct_epoch 10 --correct_thres 0.9 

python train_label_noise.py --config configs/config_constraint_indoor.json --model ResNet18 \
    --reg_method constraint --reg_norm frob \
    --reg_extractor 8.47139398080791 --reg_predictor 19.0191127114923 \
    --noise_rate 0.4 --train_correct_label --reweight_epoch 5 --reweight_temp 2.0 --correct_epoch 10 --correct_thres 0.9 

python train_label_noise.py --config configs/config_constraint_indoor.json --model ResNet18 \
    --reg_method constraint --reg_norm frob \
    --reg_extractor 10.7576018531961 --reg_predictor 19.8157649727473 \
    --noise_rate 0.6 --train_correct_label --reweight_epoch 5 --reweight_temp 2.0 --correct_epoch 10 --correct_thres 0.9 
    
python train_label_noise.py --config configs/config_constraint_indoor.json --model ResNet18 \
    --reg_method constraint --reg_norm frob \
    --reg_extractor 9.2031662757248 --reg_predictor 6.41568500472423 \
    --noise_rate 0.8 --train_correct_label --reweight_epoch 5 --reweight_temp 1.5 --correct_epoch 10 --correct_thres 0.9 

Fine-tuning Vision Transformer on noisy labels.

python train_label_noise.py --config configs/config_constraint_indoor.json \
    --model VisionTransformer --is_vit --img_size 224 --vit_type ViT-B_16 --vit_pretrained_dir pretrained/imagenet21k_ViT-B_16.npz \
    --reg_method none --reg_norm none \
    --lr 0.0001 --device 1 --noise_rate 0.4

python train_label_noise.py --config configs/config_constraint_indoor.json \
    --model VisionTransformer --is_vit --img_size 224 --vit_type ViT-B_16 --vit_pretrained_dir pretrained/imagenet21k_ViT-B_16.npz \
    --reg_method none --reg_norm none \
    --lr 0.0001 --device 1 --noise_rate 0.8

python train_label_noise.py --config configs/config_constraint_indoor.json \
    --model VisionTransformer --is_vit --img_size 224 --vit_type ViT-B_16 --vit_pretrained_dir pretrained/imagenet21k_ViT-B_16.npz \
    --reg_method constraint --reg_norm frob \
    --reg_extractor 0.7488074175044196 --reg_predictor 9.842955837419588 \
    --train_correct_label --reweight_epoch 24 --correct_epoch 18\
    --lr 0.0001 --device 1 --noise_rate 0.4

python train_label_noise.py --config configs/config_constraint_indoor.json \
    --model VisionTransformer --is_vit --img_size 224 --vit_type ViT-B_16 --vit_pretrained_dir pretrained/imagenet21k_ViT-B_16.npz \
    --reg_method constraint --reg_norm frob \
    --reg_extractor 0.1568903647089986 --reg_predictor 1.407080880079702 \
    --train_correct_label --reweight_epoch 18 --correct_epoch 2\
    --lr 0.0001 --device 1 --noise_rate 0.8

Please follow the instructions in ViT-pytorch to download the pre-trained models.

Fine-tuning ResNet-18 on ChestX-ray14 data set.

Run experiments on ChestX-ray14 in reproduce-chexnet path:

cd reproduce-chexnet

python retrain.py --reg_method None --reg_norm None --device 0

python retrain.py --reg_method constraint --reg_norm frob \
    --reg_extractor 5.728564437344309 --reg_predictor 2.5669480884876905 --scale_factor 1.0340072757925474 \
    --device 0

Citation

If you find this repository useful, consider citing our work titled above.

Acknowledgment

Thanks to the authors of the following repositories for providing their implementation publicly available.

Owner
NEU-StatsML-Research
We are a group of faculty and students from the Computer Science College of Northeastern University
NEU-StatsML-Research
Covid-19 Test AI (Deep Learning - NNs) Software. Accuracy is the %96.5, loss is the 0.09 :)

Covid-19 Test AI (Deep Learning - NNs) Software I developed a segmentation algorithm to understand whether Covid-19 Test Photos are positive or negati

Emirhan BULUT 28 Dec 04, 2021
This implementation contains the application of GPlearn's symbolic transformer on a commodity futures sector of the financial market.

GPlearn_finiance_stock_futures_extension This implementation contains the application of GPlearn's symbolic transformer on a commodity futures sector

Chengwei <a href=[email protected]"> 189 Dec 25, 2022
AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614

AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614 AquaTimer is a programmable timer for 12V devices such as lighting, solenoid

Stefan Wagner 4 Jun 13, 2022
Semantic Scholar's Author Disambiguation Algorithm & Evaluation Suite

S2AND This repository provides access to the S2AND dataset and S2AND reference model described in the paper S2AND: A Benchmark and Evaluation System f

AI2 54 Nov 28, 2022
Joint Gaussian Graphical Model Estimation: A Survey

Joint Gaussian Graphical Model Estimation: A Survey Test Models Fused graphical lasso [1] Group graphical lasso [1] Graphical lasso [1] Doubly joint s

Koyejo Lab 1 Aug 10, 2022
Pytorch implementation of the DeepDream computer vision algorithm

deep-dream-in-pytorch Pytorch (https://github.com/pytorch/pytorch) implementation of the deep dream (https://en.wikipedia.org/wiki/DeepDream) computer

102 Dec 05, 2022
Code for Max-Margin Contrastive Learning - AAAI 2022

Max-Margin Contrastive Learning This is a pytorch implementation for the paper Max-Margin Contrastive Learning accepted to AAAI 2022. This repository

Anshul Shah 12 Oct 22, 2022
A colab notebook for training Stylegan2-ada on colab, transfer learning onto your own dataset.

Stylegan2-Ada-Google-Colab-Starter-Notebook A no thrills colab notebook for training Stylegan2-ada on colab. transfer learning onto your own dataset h

Harnick Khera 66 Dec 16, 2022
TransReID: Transformer-based Object Re-Identification

TransReID: Transformer-based Object Re-Identification [arxiv] The official repository for TransReID: Transformer-based Object Re-Identification achiev

569 Dec 30, 2022
Our solution for SSN Invente 2021's Hackathon

Our solution for SSN Invente 2021's Hackathon. To help maitain godowns in a pristine and safe condition using raspberry pi.

1 Jan 12, 2022
Simple implementation of OpenAI CLIP model in PyTorch.

It was in January of 2021 that OpenAI announced two new models: DALL-E and CLIP, both multi-modality models connecting texts and images in some way. In this article we are going to implement CLIP mod

Moein Shariatnia 226 Jan 05, 2023
PyTorch implementation of some learning rate schedulers for deep learning researcher.

pytorch-lr-scheduler PyTorch implementation of some learning rate schedulers for deep learning researcher. Usage WarmupReduceLROnPlateauScheduler Visu

Soohwan Kim 59 Dec 08, 2022
This is Unofficial Repo. Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection (CVPR 2021)

Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection This is a PyTorch implementation of the LipForensics paper. This is an U

Minha Kim 2 May 11, 2022
PyTorch implementation of popular datasets and models in remote sensing

PyTorch Remote Sensing (torchrs) (WIP) PyTorch implementation of popular datasets and models in remote sensing tasks (Change Detection, Image Super Re

isaac 222 Dec 28, 2022
Evaluating Privacy-Preserving Machine Learning in Critical Infrastructures: A Case Study on Time-Series Classification

PPML-TSA This repository provides all code necessary to reproduce the results reported in our paper Evaluating Privacy-Preserving Machine Learning in

Dominik 1 Mar 08, 2022
Scaling and Benchmarking Self-Supervised Visual Representation Learning

FAIR Self-Supervision Benchmark is deprecated. Please see VISSL, a ground-up rewrite of benchmark in PyTorch. FAIR Self-Supervision Benchmark This cod

Meta Research 584 Dec 31, 2022
Code for "Hierarchical Skills for Efficient Exploration" HSD-3 Algorithm and Baselines

Hierarchical Skills for Efficient Exploration This is the source code release for the paper Hierarchical Skills for Efficient Exploration. It contains

Facebook Research 38 Dec 06, 2022
Pytorch implementation of the unsupervised object discovery method LOST.

LOST Pytorch implementation of the unsupervised object discovery method LOST. More details can be found in the paper: Localizing Objects with Self-Sup

Valeo.ai 189 Dec 25, 2022
Here I will explain the flow to deploy your custom deep learning models on Ultra96V2.

Xilinx_Vitis_AI This repo will help you to Deploy your Deep Learning Model on Ultra96v2 Board. Prerequisites Vitis Core Development Kit 2019.2 This co

Amin Mamandipoor 1 Feb 08, 2022
gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions

gtfs2vec This is a companion repository for a gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions publication. Vis

Politechnika Wrocławska - repozytorium dla informatyków 5 Oct 10, 2022