source code for https://arxiv.org/abs/2005.11248 "Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics"

Overview

Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics

This work will be published in Nature Biomedical Engineering on March 11, 2021

URL : https://www.nature.com/articles/s41551-021-00689-x

De novo therapeutic design is challenged by a vast chemical repertoire and multiple constraints, e.g., high broad-spectrum potency and low toxicity. This project proposes CLaSS (Controlled Latent attribute Space Sampling) - an efficient computational method for attribute-controlled generation of molecules, which leverages guidance from classifiers trained on an informative latent space of molecules modeled using a deep generative autoencoder. We screen the generated molecules for additional key attributes by using deep learning classifiers in conjunction with novel features derived from atomistic simulations.

Setup

  • The amp_gen.yml lists are the required dependencies for the project.
  • Use amp_gen.yml to create your own conda environment to run this project. Command: conda-env create -f amp_gen.yml

Usage

Phase 1: Autoencoder (VAE/WAE) Training

  • ./run.sh. This will run with default config from cfg.py. Since cfg.runname=default the output goes to output/default and tb/default.
  • python main.py --tiny 1 for fast testing with default config file.
  • Additionally, one could explicitly run the individual scripts as follows:
    • python main.py --phase 1

    • python static_eval.py --config_json output/dir/config_overrides.json

Phase 2: CLaSS (Controlled Latent attribute Space Sampling)

  • python sample_pipeline.py --config_json output/default/config_overrides.json --samples_outfn_prefix samples --Q_select_amppos 0

Data:

Related Visualization Tools

Citations

Please cite the following articles:

@article{das2020accelerating,
  title={Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics},
  author={Das, Payel and Sercu, Tom and Wadhawan, Kahini and Padhi, Inkit and Gehrmann, Sebastian and Cipcigan, Flaviu and Chenthamarakshan, Vijil and Strobelt, Hendrik and Santos, Cicero dos and Chen, Pin-Yu and others},
  journal={arXiv preprint arXiv:2005.11248},
  year={2020}
}
@article{chenthamarakshan2020cogmol,
  title={CogMol: Target-specific and selective drug design for COVID-19 using deep generative models},
  author={Chenthamarakshan, Vijil and Das, Payel and Hoffman, Samuel C and Strobelt, Hendrik and Padhi, Inkit and Lim, KW and others},
  journal={arXiv: 2004.01215},
  year={2020}
  }
Owner
International Business Machines
International Business Machines
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation Ported from https://github.com/hzwer/arXiv2020-RIFE Dependencies NumPy

49 Jan 07, 2023
A PyTorch implementation of "Capsule Graph Neural Network" (ICLR 2019).

CapsGNN ⠀⠀ A PyTorch implementation of Capsule Graph Neural Network (ICLR 2019). Abstract The high-quality node embeddings learned from the Graph Neur

Benedek Rozemberczki 1.2k Jan 02, 2023
DNA sequence classification by Deep Neural Network

DNA sequence classification by Deep Neural Network: Project Overview worked on the DNA sequence classification problem where the input is the DNA sequ

Mohammed Jawwadul Islam Fida 0 Aug 02, 2022
PINN(s): Physics-Informed Neural Network(s) for von Karman vortex street

PINN(s): Physics-Informed Neural Network(s) for von Karman vortex street This is

ShotaDEGUCHI 2 Apr 18, 2022
TVNet: Temporal Voting Network for Action Localization

TVNet: Temporal Voting Network for Action Localization This repo holds the codes of paper: "TVNet: Temporal Voting Network for Action Localization". P

hywang 5 Jul 26, 2022
Playable Video Generation

Playable Video Generation Playable Video Generation Willi Menapace, Stéphane Lathuilière, Sergey Tulyakov, Aliaksandr Siarohin, Elisa Ricci Paper: ArX

Willi Menapace 136 Dec 31, 2022
This repo contains the code and data used in the paper "Wizard of Search Engine: Access to Information Through Conversations with Search Engines"

Wizard of Search Engine: Access to Information Through Conversations with Search Engines by Pengjie Ren, Zhongkun Liu, Xiaomeng Song, Hongtao Tian, Zh

19 Oct 27, 2022
Tensorflow 2.x based implementation of EDSR, WDSR and SRGAN for single image super-resolution

Single Image Super-Resolution with EDSR, WDSR and SRGAN A Tensorflow 2.x based implementation of Enhanced Deep Residual Networks for Single Image Supe

Martin Krasser 1.3k Jan 06, 2023
Source-to-Source Debuggable Derivatives in Pure Python

Tangent Tangent is a new, free, and open-source Python library for automatic differentiation. Existing libraries implement automatic differentiation b

Google 2.2k Jan 01, 2023
Convnet transfer - Code for paper How transferable are features in deep neural networks?

How transferable are features in deep neural networks? This repository contains source code necessary to reproduce the results presented in the follow

Jason Yosinski 143 Sep 13, 2022
Python Actor concurrency library

Thespian Actor Library This library provides the framework of an Actor model for use by applications implementing Actors. Thespian Site with Documenta

Kevin Quick 177 Dec 11, 2022
Experiments with differentiable stacks and queues in PyTorch

Please use stacknn-core instead! StackNN This project implements differentiable stacks and queues in PyTorch. The data structures are implemented in s

Will Merrill 141 Oct 06, 2022
Independent and minimal implementations of some reinforcement learning algorithms using PyTorch (including PPO, A3C, A2C, ...).

PyTorch RL Minimal Implementations There are implementations of some reinforcement learning algorithms, whose characteristics are as follow: Less pack

Gemini Light 4 Dec 31, 2022
This GitHub repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.'

About Repository This repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.' About Code

Arun Verma 1 Nov 09, 2021
A simple software for capturing human body movements using the Kinect camera.

KinectMotionCapture A simple software for capturing human body movements using the Kinect camera. The software can seamlessly save joints and bones po

Aleksander Palkowski 5 Aug 13, 2022
CUDA Python Low-level Bindings

CUDA Python Low-level Bindings

NVIDIA Corporation 529 Jan 03, 2023
QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper)

QAHOI QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper) Requirements PyTorch = 1.5.1 torchvision = 0.6.1 pip install -r requ

38 Dec 29, 2022
Gauge equivariant mesh cnn

Geometric Mesh CNN The code in this repository is an implementation of the Gauge Equivariant Mesh CNN introduced in the paper Gauge Equivariant Mesh C

50 Dec 18, 2022
CVPR2021 Content-Aware GAN Compression

Content-Aware GAN Compression [ArXiv] Paper accepted to CVPR2021. @inproceedings{liu2021content, title = {Content-Aware GAN Compression}, auth

52 Nov 06, 2022
Ray tracing of a Schwarzschild black hole written entirely in TensorFlow.

TensorGeodesic Ray tracing of a Schwarzschild black hole written entirely in TensorFlow. Dependencies: Python 3 TensorFlow 2.x numpy matplotlib About

5 Jan 15, 2022