Synthesizing and manipulating 2048x1024 images with conditional GANs

Overview





pix2pixHD

Project | Youtube | Paper

Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic image-to-image translation. It can be used for turning semantic label maps into photo-realistic images or synthesizing portraits from face label maps.

High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs
Ting-Chun Wang1, Ming-Yu Liu1, Jun-Yan Zhu2, Andrew Tao1, Jan Kautz1, Bryan Catanzaro1
1NVIDIA Corporation, 2UC Berkeley
In CVPR 2018.

Image-to-image translation at 2k/1k resolution

  • Our label-to-streetview results

- Interactive editing results

- Additional streetview results

  • Label-to-face and interactive editing results

  • Our editing interface

Prerequisites

  • Linux or macOS
  • Python 2 or 3
  • NVIDIA GPU (11G memory or larger) + CUDA cuDNN

Getting Started

Installation

pip install dominate
  • Clone this repo:
git clone https://github.com/NVIDIA/pix2pixHD
cd pix2pixHD

Testing

  • A few example Cityscapes test images are included in the datasets folder.
  • Please download the pre-trained Cityscapes model from here (google drive link), and put it under ./checkpoints/label2city_1024p/
  • Test the model (bash ./scripts/test_1024p.sh):
#!./scripts/test_1024p.sh
python test.py --name label2city_1024p --netG local --ngf 32 --resize_or_crop none

The test results will be saved to a html file here: ./results/label2city_1024p/test_latest/index.html.

More example scripts can be found in the scripts directory.

Dataset

  • We use the Cityscapes dataset. To train a model on the full dataset, please download it from the official website (registration required). After downloading, please put it under the datasets folder in the same way the example images are provided.

Training

  • Train a model at 1024 x 512 resolution (bash ./scripts/train_512p.sh):
#!./scripts/train_512p.sh
python train.py --name label2city_512p
  • To view training results, please checkout intermediate results in ./checkpoints/label2city_512p/web/index.html. If you have tensorflow installed, you can see tensorboard logs in ./checkpoints/label2city_512p/logs by adding --tf_log to the training scripts.

Multi-GPU training

  • Train a model using multiple GPUs (bash ./scripts/train_512p_multigpu.sh):
#!./scripts/train_512p_multigpu.sh
python train.py --name label2city_512p --batchSize 8 --gpu_ids 0,1,2,3,4,5,6,7

Note: this is not tested and we trained our model using single GPU only. Please use at your own discretion.

Training with Automatic Mixed Precision (AMP) for faster speed

  • To train with mixed precision support, please first install apex from: https://github.com/NVIDIA/apex
  • You can then train the model by adding --fp16. For example,
#!./scripts/train_512p_fp16.sh
python -m torch.distributed.launch train.py --name label2city_512p --fp16

In our test case, it trains about 80% faster with AMP on a Volta machine.

Training at full resolution

  • To train the images at full resolution (2048 x 1024) requires a GPU with 24G memory (bash ./scripts/train_1024p_24G.sh), or 16G memory if using mixed precision (AMP).
  • If only GPUs with 12G memory are available, please use the 12G script (bash ./scripts/train_1024p_12G.sh), which will crop the images during training. Performance is not guaranteed using this script.

Training with your own dataset

  • If you want to train with your own dataset, please generate label maps which are one-channel whose pixel values correspond to the object labels (i.e. 0,1,...,N-1, where N is the number of labels). This is because we need to generate one-hot vectors from the label maps. Please also specity --label_nc N during both training and testing.
  • If your input is not a label map, please just specify --label_nc 0 which will directly use the RGB colors as input. The folders should then be named train_A, train_B instead of train_label, train_img, where the goal is to translate images from A to B.
  • If you don't have instance maps or don't want to use them, please specify --no_instance.
  • The default setting for preprocessing is scale_width, which will scale the width of all training images to opt.loadSize (1024) while keeping the aspect ratio. If you want a different setting, please change it by using the --resize_or_crop option. For example, scale_width_and_crop first resizes the image to have width opt.loadSize and then does random cropping of size (opt.fineSize, opt.fineSize). crop skips the resizing step and only performs random cropping. If you don't want any preprocessing, please specify none, which will do nothing other than making sure the image is divisible by 32.

More Training/Test Details

  • Flags: see options/train_options.py and options/base_options.py for all the training flags; see options/test_options.py and options/base_options.py for all the test flags.
  • Instance map: we take in both label maps and instance maps as input. If you don't want to use instance maps, please specify the flag --no_instance.

Citation

If you find this useful for your research, please use the following.

@inproceedings{wang2018pix2pixHD,
  title={High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs},
  author={Ting-Chun Wang and Ming-Yu Liu and Jun-Yan Zhu and Andrew Tao and Jan Kautz and Bryan Catanzaro},  
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2018}
}

Acknowledgments

This code borrows heavily from pytorch-CycleGAN-and-pix2pix.

Corruption Invariant Learning for Re-identification

Corruption Invariant Learning for Re-identification The official repository for Benchmarks for Corruption Invariant Person Re-identification (NeurIPS

Minghui Chen 73 Dec 08, 2022
Implementation of Memory-Compressed Attention, from the paper "Generating Wikipedia By Summarizing Long Sequences"

Memory Compressed Attention Implementation of the Self-Attention layer of the proposed Memory-Compressed Attention, in Pytorch. This repository offers

Phil Wang 47 Dec 23, 2022
A simple baseline for 3d human pose estimation in PyTorch.

3d_pose_baseline_pytorch A PyTorch implementation of a simple baseline for 3d human pose estimation. You can check the original Tensorflow implementat

weigq 312 Jan 06, 2023
The Illinois repository for Climatehack (https://climatehack.ai/). We won 1st place!

Climatehack This is the repository for Illinois's Climatehack Team. We earned first place on the leaderboard with a final score of 0.87992. An overvie

Jatin Mathur 20 Jun 09, 2022
Official Implementation of "Designing an Encoder for StyleGAN Image Manipulation"

Designing an Encoder for StyleGAN Image Manipulation (SIGGRAPH 2021) Recently, there has been a surge of diverse methods for performing image editing

749 Jan 09, 2023
Python script to download the celebA-HQ dataset from google drive

download-celebA-HQ Python script to download and create the celebA-HQ dataset. WARNING from the author. I believe this script is broken since a few mo

133 Dec 21, 2022
Implementation of ICCV21 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers

Implementation of ICCV 2021 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers arxiv This repository is based on detr Recently, DETR

twang 113 Dec 27, 2022
Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..

ARAPReg Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators.. Installation The cod

Bo Sun 132 Nov 28, 2022
A graph adversarial learning toolbox based on PyTorch and DGL.

GraphWar: Arms Race in Graph Adversarial Learning NOTE: GraphWar is still in the early stages and the API will likely continue to change. 🚀 Installat

Jintang Li 54 Jan 05, 2023
This is the code for the paper "Motion-Focused Contrastive Learning of Video Representations" (ICCV'21).

Motion-Focused Contrastive Learning of Video Representations Introduction This is the code for the paper "Motion-Focused Contrastive Learning of Video

11 Sep 23, 2022
TorchFlare is a simple, beginner-friendly, and easy-to-use PyTorch Framework train your models effortlessly.

TorchFlare TorchFlare is a simple, beginner-friendly and an easy-to-use PyTorch Framework train your models without much effort. It provides an almost

Atharva Phatak 85 Dec 26, 2022
Visualization toolkit for neural networks in PyTorch! Demo -->

FlashTorch A Python visualization toolkit, built with PyTorch, for neural networks in PyTorch. Neural networks are often described as "black box". The

Misa Ogura 692 Dec 29, 2022
Code for Mesh Convolution Using a Learned Kernel Basis

Mesh Convolution This repository contains the implementation (in PyTorch) of the paper FULLY CONVOLUTIONAL MESH AUTOENCODER USING EFFICIENT SPATIALLY

Yi_Zhou 35 Jan 03, 2023
Anchor-free Oriented Proposal Generator for Object Detection

Anchor-free Oriented Proposal Generator for Object Detection Gong Cheng, Jiabao Wang, Ke Li, Xingxing Xie, Chunbo Lang, Yanqing Yao, Junwei Han, Intro

jbwang1997 56 Nov 15, 2022
SSL_SLAM2: Lightweight 3-D Localization and Mapping for Solid-State LiDAR (mapping and localization separated) ICRA 2021

SSL_SLAM2 Lightweight 3-D Localization and Mapping for Solid-State LiDAR (Intel Realsense L515 as an example) This repo is an extension work of SSL_SL

Wang Han 王晗 1.3k Jan 08, 2023
Implementation of a Transformer using ReLA (Rectified Linear Attention)

ReLA (Rectified Linear Attention) Transformer Implementation of a Transformer using ReLA (Rectified Linear Attention). It will also contain an attempt

Phil Wang 49 Oct 14, 2022
Python tools for 3D face: 3DMM, Mesh processing(transform, camera, light, render), 3D face representations.

face3d: Python tools for processing 3D face Introduction This project implements some basic functions related to 3D faces. You can use this to process

Yao Feng 2.3k Dec 30, 2022
[Preprint] "Bag of Tricks for Training Deeper Graph Neural Networks A Comprehensive Benchmark Study" by Tianlong Chen*, Kaixiong Zhou*, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, Zhangyang Wang

Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study Codes for [Preprint] Bag of Tricks for Training Deeper Graph

VITA 101 Dec 29, 2022
Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and Tracking of Object Poses in 3D Space"

Sparse Steerable Convolution (SS-Conv) Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and

25 Dec 21, 2022
Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In CVPR 2022.

Nonuniform-to-Uniform Quantization This repository contains the training code of N2UQ introduced in our CVPR 2022 paper: "Nonuniform-to-Uniform Quanti

Zechun Liu 60 Dec 28, 2022