Run object detection model on the Raspberry Pi

Overview

Intro

Using TensorFlow Lite with Python is great for embedded devices based on Linux, such as Raspberry Pi.

This is the guide for installing TensorFlow Lite on the Raspberry Pi and running pre-trained object detection models on it.

Step 1. Setting up Rasperry Pi

Upgrade Raspbian Stretch to Buster

(If you on Buster, skip this step and simply run sudo apt-get update and sudo apt-get dist-upgrade)

$ sudo apt-get update && sudo apt-get upgrade -y

Verify nothing is wrong. Verify no errors are reported after each command. Fix as required (you’re on your own here!).

$ dpkg -C
$ apt-mark showhold

Prepare apt-get Sources

Update the sources to apt-get. This replaces “stretch” with “buster” in the repository locations giving apt-get access to the new version’s binaries.

$ sudo sed -i 's/stretch/buster/g' /etc/apt/sources.list    
$ sudo sed -i 's/stretch/buster/g' /etc/apt/sources.list.d/raspi.list

Verify this caught them all by running the following, expecting no output. If the command returns anything having previously run the sed commands above, it means more files may need tweaking. Run the sed command for each. The aim is to replace all instances of “stretch”.

$ grep -lnr stretch /etc/apt

Speed up subsequent steps by removing the list change package.

$ sudo apt-get remove apt-listchanges

Do the Upgrade

To update existing packages without updating kernel modules or removing packages, run the following.

$ sudo apt-get update && sudo apt-get upgrade -y

Alternatively, to include kernel modules and removing packages if required, run the following

$ sudo apt-get update && sudo apt-get full-upgrade -y

Cleanup old outdated packages.

$ sudo apt-get autoremove -y && sudo apt-get autoclean

Verify with

 cat /etc/os-release.

Update Firmware

$ sudo rpi-update

and

sudo apt-get install -y python3-pip

and

pip3 install --upgrade setuptools

2. Making sure camera interface is enabled in the Raspberry Pi Configuration menu

Click the Pi icon in the top left corner of the screen, select Preferences -> Raspberry Pi Configuration, and go to the Interfaces tab and verify Camera is set to Enabled. If it isn't, enable it now, and reboot the Raspberry Pi.

Converting Tensorflow to Tensorflow Lite

Using TensorFlow Lite converter. It takes TensorFlow model and generates a TensorFlow Lite model (an optimized FlatBuffer format identified by the .tflite file extension).

Step 2. Install TF Lite dependecies and set up virtual environment

clone this repo

git clone https://github.com/yanovsk/Raspberry-Pi-TF-Lite-Object-Detection

rename the folder to "tfliteod"

mv Raspberry-Pi-TF-Lite-Object-Detection tfliteod
cd tfliteod

run shell script to install get_pi_requirements

bash get_pi_req.sh

Note: shell script will auto install the lastest version of Tensorflow. To install specific version of TF, run pip3 install tensorflow==x.xx (where x.xx stands for the version you want to install)

Set up virtual environment

Install vitrtualenv

pip3 install virtualenv 

Then, create the "tfliteod-env" virtual environment by issuing:

python3 -m venv tfliteod-env

This will create a folder called tfliteod-env inside the tflite1 directory. The tfliteod-env folder will hold all the package libraries for this environment. Next, activate the environment by issuing:

source tfliteod-env/bin/activate

Step 3. Set up TensorFlow Lite detection model

Once, tensorflow is install we can proceed to seting up the object detection model.

We can use either pre-trained model or train it on our end. For the simplicity sake let's use pre-trained sample model by google

Download the sample model (also could be done thru direct link here)

wget https://storage.googleapis.com/download.tensorflow.org/models/tflite/coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.zip

upzip it

unzip coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.zip -d Sample_model

Step 4. Run the model

Note: the model should work on either Picamera module or any other webcam plugged in to the Raspberry Pi as a usb device.

From home/pi/tfliteod run the following command:

python3 TFL_object_detection.py --modeldir=Sample_model

After initializing webcam window should pop-up on your Raspebbery Pi and object detection should work.

Note: this model can recongnize only 80 common objects (check labels.txt for more info on metadata)

However, you can custom train the model using this guide.

Happy hacking!

Owner
Dimitri Yanovsky
Dimitri Yanovsky
HyDiff: Hybrid Differential Software Analysis

HyDiff: Hybrid Differential Software Analysis This repository provides the tool and the evaluation subjects for the paper HyDiff: Hybrid Differential

Yannic Noller 22 Oct 20, 2022
It is the assignment for COMP 576 in Rice University

COMP-576 It is the assignment for COMP 576 in Rice University There are two programming assignments and one Final Project. Assignment 1: It is a MLP a

Maojie Tang 1 Nov 25, 2021
Fully-automated scripts for collecting AI-related papers

AI-Paper-collector Fully-automated scripts for collecting AI-related papers List of Conferences to crawel ACL: 21-19 (including findings) EMNLP: 21-19

Gordon Lee 776 Jan 08, 2023
Source code for Fixed-Point GAN for Cloud Detection

FCD: Fixed-Point GAN for Cloud Detection PyTorch source code of Nyborg & Assent (2020). Abstract The detection of clouds in satellite images is an ess

Joachim Nyborg 8 Dec 22, 2022
Geometry-Aware Learning of Maps for Camera Localization (CVPR2018)

Geometry-Aware Learning of Maps for Camera Localization This is the PyTorch implementation of our CVPR 2018 paper "Geometry-Aware Learning of Maps for

NVIDIA Research Projects 321 Nov 26, 2022
Code for "On Memorization in Probabilistic Deep Generative Models"

On Memorization in Probabilistic Deep Generative Models This repository contains the code necessary to reproduce the experiments in On Memorization in

The Alan Turing Institute 3 Jun 09, 2022
code for paper "Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?"

Does Unsupervised Architecture Representation Learning Help Neural Architecture Search? Code for paper: Does Unsupervised Architecture Representation

39 Dec 17, 2022
VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries

VACA Code repository for the paper "VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries (arXiv)". The impleme

Pablo Sánchez-Martín 16 Oct 10, 2022
TensorFlow implementation of Elastic Weight Consolidation

Elastic weight consolidation Introduction A TensorFlow implementation of elastic weight consolidation as presented in Overcoming catastrophic forgetti

James Stokes 67 Oct 11, 2022
Point detection through multi-instance deep heatmap regression for sutures in endoscopy

Suture detection PyTorch This repo contains the reference implementation of suture detection model in PyTorch for the paper Point detection through mu

artificial intelligence in the area of cardiovascular healthcare 3 Jul 16, 2022
Tools for investing in Python

InvestOps Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction This is a Python package with simple and effective

24 Nov 26, 2022
SPEAR: Semi suPErvised dAta progRamming

Semi-Supervised Data Programming for Data Efficient Machine Learning SPEAR is a library for data programming with semi-supervision. The package implem

decile-team 91 Dec 06, 2022
Implements the training, testing and editing tools for "Pluralistic Image Completion"

Pluralistic Image Completion ArXiv | Project Page | Online Demo | Video(demo) This repository implements the training, testing and editing tools for "

Chuanxia Zheng 615 Dec 08, 2022
Build upon neural radiance fields to create a scene-specific implicit 3D semantic representation, Semantic-NeRF

Semantic-NeRF: Semantic Neural Radiance Fields Project Page | Video | Paper | Data In-Place Scene Labelling and Understanding with Implicit Scene Repr

Shuaifeng Zhi 243 Jan 07, 2023
Face Mask Detector by live camera using tensorflow-keras, openCV and Python

Face Mask Detector 😷 by Live Camera Detecting masked or unmasked faces by live camera with percentange of mask occupation About Project: This an Arti

Karan Shingde 2 Apr 04, 2022
An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects different compression algorithms have.

ImageCompressionSimulation An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects o

James Park 1 Dec 11, 2021
A python library to artfully visualize Factorio Blueprints and an interactive web demo for using it.

Factorio Blueprint Visualizer I love the game Factorio and I really like the look of factories after growing for many hours or blueprints after tweaki

Piet Brömmel 124 Jan 07, 2023
HDMapNet: A Local Semantic Map Learning and Evaluation Framework

HDMapNet_devkit Devkit for HDMapNet. HDMapNet: A Local Semantic Map Learning and Evaluation Framework Qi Li, Yue Wang, Yilun Wang, Hang Zhao [Paper] [

Tsinghua MARS Lab 421 Jan 04, 2023
EsViT: Efficient self-supervised Vision Transformers

Efficient Self-Supervised Vision Transformers (EsViT) PyTorch implementation for EsViT, built with two techniques: A multi-stage Transformer architect

Microsoft 352 Dec 25, 2022
Tom-the-AI - A compound artificial intelligence software for Linux systems.

Tom the AI (version 0.82) WARNING: This software is not yet ready to use, I'm still setting up the GitHub repository. Should be ready in a few days. T

2 Apr 28, 2022