A comprehensive repository containing 30+ notebooks on learning machine learning!

Overview

A Complete Machine Learning Package


Techniques, tools, best practices and everything you need to to learn machine learning!

toolss

This is a comprehensive repository containing 30+ notebooks on Python programming, data manipulation, data analysis, data visualization, data cleaning, classical machine learning, Computer Vision and Natural Language Processing(NLP).

All notebooks were created with the readers in mind. Every notebook starts with a high-level overview of any specific algorithm/concepts being covered. Wherever possible, visuals are used to make things clear.

Viewing and Running the Notebooks

The easiest way to view all the notebooks is to use Nbviewer.

  • Render nbviewer

If you want to play with the codes, you can use the following platforms:

  • Open In Colab

  • Launch in Deepnote

Deepnote will direct you to Intro to Machine Learning. Heads to the project side bar for more notebooks.

Tools Overview

The following are the tools that are covered in the notebooks. They are popular tools that machine learning engineers and data scientists need in one way or another and day to day.

  • Python is a high level programming language that has got a lot of popularity in the data community and with the rapid growth of the libraries and frameworks, this is a right programming language to do ML.

  • NumPy is a scientific computing tool used for array or matrix operations.

  • Pandas is a great and simple tool for analyzing and manipulating data from a variety of different sources.

  • Matplotlib is a comprehensive data visualization tool used to create static, animated, and interactive visualizations in Python.

  • Seaborn is another data visualization tool built on top of Matplotlib which is pretty simple to use.

  • Scikit-Learn: Instead of building machine learning models from scratch, Scikit-Learn makes it easy to use classical models in a few lines of code. This tool is adapted by almost the whole of the ML community and industries, from the startups to the big techs.

  • TensorFlow and Keras for neural networks: TensorFlow is a popular deep learning framework used for building models suitable for different fields such as Computer Vision and Natural Language Processing. At its backend, it uses Keras which is a high level API for building neural networks easily. TensorFlow has gained a lot of popularity in the ML community due to its complete ecosystem made of wholesome tools including TensorBoard, TF Datasets, TensorFlow Lite, TensorFlow Extended, TensorFlow.js, etc...

Outline

Part 1 - Intro to Python and Working with Data

0 - Intro to Python for Machine Learning

1 - Data Computation With NumPy

  • Creating a NumPy Array
  • Selecting Data: Indexing and Slicing An Array
  • Performing Mathematical and other Basic Operations
  • Perform Basic Statistics
  • Manipulating Data

2 - Data Manipulation with Pandas

  • Basics of Pandas
    • Series and DataFrames
    • Data Indexing and Selection
    • Dealing with Missing data
    • Basic operations and Functions
    • Aggregation Methods
    • Groupby
    • Merging, Joining and Concatenate
  • Beyond Dataframes: Working with CSV, and Excel
  • Real World Exploratory Data Analysis (EDA)

3 - Data Visualization with Matplotlib and Seaborn

4 - Real World Data - Exploratory Analysis and Data Preparation

Part 2 - Machine Learning

5 - Intro to Machine Learning

  • Intro to Machine Learning
  • Machine Learning Workflow
  • Evaluation Metrics
  • Handling Underfitting and Overfitting

6 - Classical Machine Learning with Scikit-Learn

Part 3 - Deep Learning

7 - Intro to Artificial Neural Networks and TensorFlow

8 - Deep Computer Vision with TensorFlow

9 - Natural Language Processing with TensorFlow

Used Datasets

Many of the datasets used for this repository are from the following sources:

Further Resources

Machine Learning community is very vibrant. There are many faboulous learning resources, some of which are paid or free available. Here is a list of courses that has got high community ratings. They are not listed in an order they are to be taken.

Courses

  • Machine Learning by Coursera: This course was tought by Andrew Ng. It is one of the most popular machine learning courses, it has been taken by over 4M of people. The course focuses more about the fundamentals of machine learning techniques and algorithms. It is free on Coursera.

  • Deep Learning Specialization: Also tought by Andrew Ng., Deep Learning Specialization is also a foundations based course. It teaches a decent foundations of major deep learning architectures such as convolutional neural networks and recurrent neural networks. The full course can be audited on Coursera, or watch freely on Youtube.

  • MIT Intro to Deep Learning: This course provide the foundations of deep learning in resonably short period of time. Each lecture is one hour or less, but the materials are still the best in classs. Check the course page here, and lecture videos here.

  • CS231N: Convolutional Neural Networks for Visual Recognition by Stanford: CS231N is one of the best deep learning and computer vision courses. The 2017 version was taught by Fei-Fei Li, Justin Johnson and Serena Yeung. The 2016 version was taught by Fei-Fei, Johnson and Andrej Karpathy. See 2017 lecture videos here, and other materials here.

  • Practical Deep Learning for Coders by fast.ai: This is also an intensive deep learning course pretty much the whole spectrum of deep learning architectures and techniques. The lecture videos and other resources such as notebooks on the course page.

  • Full Stack Deep Learning: While the majority of machine learning courses focuses on modelling, this course focuses on shipping machine learning systems. It teaches how to design machine learning projects, data management(storage, access, processing, versioning, and labeling), training, debugging, and deploying machine learning models. See 2021 version here and 2019 here. You can also skim through the project showcases to see the kind of the courses outcomes through learners projects.

  • NYU Deep Learning Spring 2021: Taught at NYU by Yann LeCun, Alfredo Canziani, this course is one of the most creative courses out there. The materials are presented in amazing way. Check the lecture videos here, and the course repo here.

  • CS224N: Natural Language Processing with Deep Learning by Stanford: If you are interested in Natural Language Processing, this is a great course to take. It is taught by Christopher Manning, one of the world class NLP stars. See the lecture videos here.

Books

Below is of the most awesome machine learning books.

  • The Hundred-Page Machine Learning Book: Authored by Andriy Burkov, this is one of the shortest but concise and well written book that you will ever find on the internet. You can read the book for free here.

  • Machine Learning Engineering: Also authored by Andriy Burkov, this is another great machine learning book that uncover each step of machine learning workflow, from data collection, preparation....to model serving and maintenance. The book is also free here.

  • Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Authored by Aurelion Geron, this is one of the best machine learning books. It is clearly written and full of ideas and best practices. You can ge the book here, or see its repository here.

  • Deep Learning: Authored by 3 deep learning legends, Ian Goodfellow and Yoshua Bengio and Aaron Courville, this is one of the great deep learning books that is freely available. You can get it here.

  • Deep Learning with Python: Authored by Francois Chollet, The Keras designer, this is a very comprehensive deep learning book. You can get the book here, and the book repo here.

  • Dive into Deep Learning: This is also a great deep learning book that is freely available. The book uses both PyTorch and TensorFlow. You can read the entire book here.

  • Neural Networks and Deep Learning: This is also another great deep learning online book by Michael Nielsen. You can read the entire book here.

If you are interested in more machine learning and deep learning resources, check this, this


This repository was created by Jean de Dieu Nyandwi. You can find him on:

If you find any of this thing helpful, shoot him a tweet or a mention :)

Owner
Jean de Dieu Nyandwi
Building machine learning systems!
Jean de Dieu Nyandwi
A python library for easy manipulation and forecasting of time series.

Time Series Made Easy in Python darts is a python library for easy manipulation and forecasting of time series. It contains a variety of models, from

Unit8 5.2k Jan 04, 2023
scikit-multimodallearn is a Python package implementing algorithms multimodal data.

scikit-multimodallearn is a Python package implementing algorithms multimodal data. It is compatible with scikit-learn, a popul

12 Jun 29, 2022
Fundamentals of Machine Learning

Fundamentals-of-Machine-Learning This repository introduces the basics of machine learning algorithms for preprocessing, regression and classification

Happy N. Monday 3 Feb 15, 2022
XGBoost-Ray is a distributed backend for XGBoost, built on top of distributed computing framework Ray.

XGBoost-Ray is a distributed backend for XGBoost, built on top of distributed computing framework Ray.

92 Dec 14, 2022
TIANCHI Purchase Redemption Forecast Challenge

TIANCHI Purchase Redemption Forecast Challenge

Haorui HE 4 Aug 26, 2022
Course files for "Ocean/Atmosphere Time Series Analysis"

time-series This package contains all necessary files for the course Ocean/Atmosphere Time Series Analysis, an introduction to data and time series an

Jonathan Lilly 107 Nov 29, 2022
UpliftML: A Python Package for Scalable Uplift Modeling

UpliftML is a Python package for scalable unconstrained and constrained uplift modeling from experimental data. To accommodate working with big data, the package uses PySpark and H2O models as base l

Booking.com 254 Dec 31, 2022
Code Repository for Machine Learning with PyTorch and Scikit-Learn

Code Repository for Machine Learning with PyTorch and Scikit-Learn

Sebastian Raschka 1.4k Jan 03, 2023
High performance Python GLMs with all the features!

High performance Python GLMs with all the features!

QuantCo 200 Dec 14, 2022
Sleep stages are classified with the help of ML. We have used 4 different ML algorithms (SVM, KNN, RF, NN) to demonstrate them

Sleep stages are classified with the help of ML. We have used 4 different ML algorithms (SVM, KNN, RF, NN) to demonstrate them.

Anirudh Edpuganti 3 Apr 03, 2022
Forecasting prices using Facebook/Meta's Prophet model

CryptoForecasting using Machine and Deep learning (Part 1) CryptoForecasting using Machine Learning The main aspect of predicting the stock-related da

1 Nov 27, 2021
Apple-voice-recognition - Machine Learning

Apple-voice-recognition Machine Learning How does Siri work? Siri is based on large-scale Machine Learning systems that employ many aspects of data sc

Harshith VH 1 Oct 22, 2021
A machine learning web application for binary classification using streamlit

Machine Learning web App This is a machine learning web application for binary classification using streamlit options this application contains 3 clas

abdelhak mokri 1 Dec 20, 2021
Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn.

Repository Status for Scikit-learn Live webpage Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn. Running local

Thomas J. Fan 6 Dec 27, 2022
李航《统计学习方法》复现

本项目复现李航《统计学习方法》每一章节的算法 特点: 笔记摘要:在每个文件开头都会有一些核心的摘要 pythonic:这里会用尽可能规范的方式来实现,包括编程风格几乎严格按照PEP8 循序渐进:前期的算法会更list的方式来做计算,可读性比较强,后期几乎完全为numpy.array的计算,并且辅助详

58 Oct 22, 2021
This is an auto-ML tool specialized in detecting of outliers

Auto-ML tool specialized in detecting of outliers Description This tool will allows you, with a Dash visualization, to compare 10 models of machine le

1 Nov 03, 2021
Dragonfly is an open source python library for scalable Bayesian optimisation.

Dragonfly is an open source python library for scalable Bayesian optimisation. Bayesian optimisation is used for optimising black-box functions whose

744 Jan 02, 2023
A chain of stores, 10 different stores and 50 different requests a 3-month demand forecast for its product.

Demand-Forecasting Business Problem A chain of stores, 10 different stores and 50 different requests a 3-month demand forecast for its product.

Ayşe Nur Türkaslan 3 Mar 06, 2022
Polyglot Machine Learning example for scraping similar news articles.

Polyglot Machine Learning example for scraping similar news articles In this example, we will see how we can work with Machine Learning applications w

MetaCall 15 Mar 28, 2022
ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more

ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more

Broad Institute 65 Dec 20, 2022