Create large-scale ML-driven multiscale simulation ensembles to study the interactions

Overview

MuMMI RAS v0.1

Released: Nov 16, 2021

MuMMI RAS is the application component of the MuMMI framework developed to create large-scale ML-driven multiscale simulation ensembles to study the interactions of RAS proteins and RAS-RAF protein complexes with lipid plasma membranes.

MuMMI framework was developed as part of the Pilot2 project of the Joint Design of Advanced Computing Solutions for Cancer funded jointly by the Department of Energy (DOE) and the National Cancer Institute (NCI).

The Pilot 2 project focuses on developing multiscale simulation models for understanding the interactions of the lipid plasma membrane with the RAS and RAF proteins. The broad computational tool development aims of this pilot are:

  • Developing scalable multi-scale molecular dynamics code that will automatically switch between phase field, coarse-grained and all-atom simulations.
  • Developing scalable machine learning and predictive models of molecular simulations to:
    • identify and quantify states from simulations
    • identify events from simulations that can automatically signal change of resolution between phase field, coarse-grained and all-atom simulations
    • aggregate information from the multi-resolution simulations to efficiently feedback to/from machine learning tools
  • Integrate sparse information from experiments with simulation data

MuMMI RAS defines the specific functionalities needed for the various components and scales of a target multiscale simulation. The application components need to define the scales, how to read the corresponding data, how to perform ML-based selection, how to run the simulations, how to perform analysis, and how to perform feedback. This code uses several utilities made available through "MuMMI Core".

Publications

MuMMI framework is described in the following publications.

  1. Bhatia et al. Generalizable Coordination of Large Multiscale Ensembles: Challenges and Learnings at Scale. In Proceedings of the ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, SC '21, Article No. 10, November 2021. doi:10.1145/3458817.3476210.

  2. Di Natale et al. A Massively Parallel Infrastructure for Adaptive Multiscale Simulations: Modeling RAS Initiation Pathway for Cancer. In Proceedings of the ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, SC '19, Article No. 57, November 2019. doi:10.1145/3295500.3356197.
    Best Paper at SC 2019.

  3. Ingólfsson et al. Machine Learning-driven Multiscale Modeling Reveals Lipid-Dependent Dynamics of RAS Signaling Protein. Proceedings of the National Academy of Sciences (PNAS), accepted, 2021. preprint.

  4. Reciprocal Coupling of Coarse-Grained and All-Atom scales. In preparation.

Installation

git clone https://github.com/mummi-framework/mummi-ras
cd mummi-ras
pip3 install .

export MUMMI_ROOT=/path/to/outputs
export MUMMI_CORE=/path/to/core/repo
export MUMMI_APP=/path/to/app/repo
export MUMMI_RESOURCES=/path/to/resources
The installaton process as described above installs the MuMMI framework. The simulation codes (gridsim2d, ddcMD, AMBER, GROMACS) are not included and are to be installed separately.
Spack installation. We are also working towards releasing the option of installing MuMMI and its dependencies through spack.

Authors and Acknowledgements

MuMMI was developed at Lawrence Livermore National Laboratory, in collaboration with Los Alamos National Laboratory, Oak Ridge National Laboratory, and International Business Machines. A list of main contributors is given below.

  • LLNL: Harsh Bhatia, Francesco Di Natale, Helgi I Ingólfsson, Joseph Y Moon, Xiaohua Zhang, Joseph R Chavez, Fikret Aydin, Tomas Oppelstrup, Timothy S Carpenter, Shiv Sundaram (previously LLNL), Gautham Dharuman (previously LLNL), Dong H Ahn, Stephen Herbein, Tom Scogland, Peer-Timo Bremer, and James N Glosli.

  • LANL: Chris Neale and Cesar Lopez

  • ORNL: Chris Stanley

  • IBM: Sara K Schumacher

MuMMI was funded by the Pilot2 project led by Dr. Fred Streitz (DOE) and Dr. Dwight Nissley (NIH). We acknowledge contributions from the entire Pilot 2 team.

This work was performed under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, Los Alamos National Laboratory (LANL) under Contract DE-AC5206NA25396, and Oak Ridge National Laboratory under Contract DE-AC05-00OR22725.

Contact: Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550.

Contributing

Contributions may be made through pull requests and/or issues on github.

License

MuMMI RAS is distributed under the terms of the MIT License.

Livermore Release Number: LLNL-CODE-827655

Comments
  • Are the trajectories in your publications publicly available?

    Are the trajectories in your publications publicly available?

    Hi, Congrats on the success, and huge thanks for making it open source. I wonder whether the trajectories in your publications are publicly available. Or are there any demo trajectories?

    I am a Ph.D. student at KAUST, using computer graphics to build and visualize mesoscale biology models, such as SARS-CoV-2 and bacteriophage T4. If possible, I (and my colleagues) would like to perform (multiscale, multi-representation, multi-granularity) visualization research on the trajectories you generated.

    Many thanks, Roden

    opened by RodenLuo 2
  • `flux` vs `slurm`

    `flux` vs `slurm`

    Hi,

    As flux is mentioned in the dependencies, is it possible to reproduce MuMMI RAS on a cluster that only has slurm?

    Workflow dependencies (e.g., python, flux, dynim, keras, etc.)

    Quoted from: https://github.com/mummi-framework/mummi-ras/blob/main/INSTALL.md

    Many thanks, Roden

    opened by RodenLuo 0
  • gridsim2d availability

    gridsim2d availability

    Hi, I wonder if the following code is available or not.

    gridsim2d: to be released shortly

    Quoted from: https://github.com/mummi-framework/mummi-ras/blob/main/INSTALL.md

    Thanks, Roden

    opened by RodenLuo 0
  • Patch for gromacs availability

    Patch for gromacs availability

    Hi, I wonder if the following patch is available or not.

    Note that we have a patch for gromacs installation for customization. To be open-sourced soon.

    Quoted from: https://github.com/mummi-framework/mummi-ras/blob/main/INSTALL.md

    Thanks, Roden

    opened by RodenLuo 0
  • Small scale test data for local deployment

    Small scale test data for local deployment

    Hi, I'm interested in deploying MuMMI on the KAUST IBEX cluster. It is mentioned in the installation doc that there is a small set of test data. Is it now publicly available? If not, is it possible for me to somehow access it so that I can perform a test run?

    Many thanks, Roden

    Again on lassen and on summit, we have created a small set of test data, which can be used to launch MuMMI at small scales. This (and the larger dataset) will be made public through NCI website. Until then, we can make this data available upon request.

    opened by RodenLuo 1
Releases(v1.0.0)
Machine Learning Algorithms ( Desion Tree, XG Boost, Random Forest )

implementation of machine learning Algorithms such as decision tree and random forest and xgboost on darasets then compare results for each and implement ant colony and genetic algorithms on tsp map,

Mohamadreza Rezaei 1 Jan 19, 2022
The code from the Machine Learning Bookcamp book and a free course based on the book

The code from the Machine Learning Bookcamp book and a free course based on the book

Alexey Grigorev 5.5k Jan 09, 2023
Apache Liminal is an end-to-end platform for data engineers & scientists, allowing them to build, train and deploy machine learning models in a robust and agile way

Apache Liminals goal is to operationalise the machine learning process, allowing data scientists to quickly transition from a successful experiment to an automated pipeline of model training, validat

The Apache Software Foundation 121 Dec 28, 2022
MBTR is a python package for multivariate boosted tree regressors trained in parameter space.

MBTR is a python package for multivariate boosted tree regressors trained in parameter space.

SUPSI-DACD-ISAAC 61 Dec 19, 2022
Simple, light-weight config handling through python data classes with to/from JSON serialization/deserialization.

Simple but maybe too simple config management through python data classes. We use it for machine learning.

Eren Gölge 67 Nov 29, 2022
A Lightweight Hyperparameter Optimization Tool 🚀

The mle-hyperopt package provides a simple and intuitive API for hyperparameter optimization of your Machine Learning Experiment (MLE) pipeline.

Robert Lange 137 Dec 02, 2022
scikit-learn is a python module for machine learning built on top of numpy / scipy

About scikit-learn is a python module for machine learning built on top of numpy / scipy. The purpose of the scikit-learn-tutorial subproject is to le

Gael Varoquaux 122 Dec 12, 2022
MegFlow - Efficient ML solutions for long-tailed demands.

Efficient ML solutions for long-tailed demands.

旷视天元 MegEngine 371 Dec 21, 2022
CD) in machine learning projectsImplementing continuous integration & delivery (CI/CD) in machine learning projects

CML with cloud compute This repository contains a sample project using CML with Terraform (via the cml-runner function) to launch an AWS EC2 instance

Iterative 19 Oct 03, 2022
使用数学和计算机知识投机倒把

偷鸡不成项目集锦 坦率地讲,涉及金融市场的好策略如果公开,必然导致使用的人多,最后策略变差。所以这个仓库只收集我目前失败了的案例。 加密货币组合套利 中国体育彩票预测 我赚不上钱的项目,也许可以帮助更有能力的人去赚钱。

Roy 28 Dec 29, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
LibTraffic is a unified, flexible and comprehensive traffic prediction library based on PyTorch

LibTraffic is a unified, flexible and comprehensive traffic prediction library, which provides researchers with a credibly experimental tool and a convenient development framework. Our library is imp

432 Jan 05, 2023
Arquivos do curso online sobre a estatística voltada para ciência de dados e aprendizado de máquina.

Estatistica para Ciência de Dados e Machine Learning Arquivos do curso online sobre a estatística voltada para ciência de dados e aprendizado de máqui

Renan Barbosa 1 Jan 10, 2022
Nevergrad - A gradient-free optimization platform

Nevergrad - A gradient-free optimization platform nevergrad is a Python 3.6+ library. It can be installed with: pip install nevergrad More installati

Meta Research 3.4k Jan 08, 2023
Python Automated Machine Learning library for tabular data.

Simple but powerful Automated Machine Learning library for tabular data. It uses efficient in-memory SAP HANA algorithms to automate routine Data Scie

Daniel Khromov 47 Dec 17, 2022
Project to deploy a machine learning model based on Titanic dataset from Kaggle

kaggle_titanic_deploy Project to deploy a machine learning model based on Titanic dataset from Kaggle In this project we used the Titanic dataset from

Vivian Yamassaki 8 May 23, 2022
Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Python Extreme Learning Machine (ELM) Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Augusto Almeida 84 Nov 25, 2022
The Emergence of Individuality

The Emergence of Individuality

16 Jul 20, 2022
Stats, linear algebra and einops for xarray

xarray-einstats Stats, linear algebra and einops for xarray ⚠️ Caution: This project is still in a very early development stage Installation To instal

ArviZ 30 Dec 28, 2022
Tribuo - A Java machine learning library

Tribuo - A Java prediction library (v4.1) Tribuo is a machine learning library in Java that provides multi-class classification, regression, clusterin

Oracle 1.1k Dec 28, 2022