Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec

Related tags

Text Data & NLPWake
Overview

Wake

Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec

Abstract

استخراج خودکار کلمات کلیدی متون کوتاه فارسی با استفاده از word2vec

با رشد روز افزون اسناد و متون الکترونیکی به زبان فارسی، به کارگیری روش­هایی سریع و ارزان برای دسترسی بـه متـون مورد نظر از میان مجموعه وسیع این مستندات، اهمیت بیشتری می­یابد. برای رسیدن به این هدف، استخراج کلمات کلیدی که بیانگر مضمون اصلی متن باشند، روشی بسیار مؤثر است. تعداد تکرار یک کلمه در متن نمی­تواند نشان­دهنده­ اهمیت یک کلمه و کلیدی بودن آن باشد. همچنین در اکثر روش­های استخراج کلمات کلیدی مفهوم و معنای متن نادیده گرفته می­شوند. از طرفی دیگر بدون ساختار بودن متون جدید در اخبار و اسناد الکترونیکی، استخراج این کلمات را مشکل می­سازد. در این مقاله روشی بدون نظارت و خودکار برای استخراج این کلمات در زبان فارسی که دارای ساختار مناسبی نمی­باشد، پیشنهاد شده است که نه تنها احتمال رخ دادن کلمه در متن و تعداد تکرار آن را در نظر می­گیرد، بلکه با آموزش مدل word2vec روی متن، مفهوم و معنای متن را نیز درک می­کند. در روش پیشنهادی که روشی ترکیبی از دو مدل آماری و یادگیری ماشین می­باشد، پس از آموزش word2vec روی متن، کلماتی که با سایر کلمات دارای فاصله­ کمی بوده استخراج شده و سپس با استفاده از هم­رخدادی و فرکانس رابطه­ای آماری برای محاسبه امتیاز پیشنهاد شده است. درنهایت با استفاده از حدآستانه کلمات با امتیاز بالاتر به‌عنوان کلمه کلیدی در نظر گرفته می­شوند. ارزیابی­­ها بیانگر کارایی روش با معیار F برابر 53.92% و با 11% افزایش نسبت به دیگر روش‌های استخراج کلمات کلیدی می­باشد.

Run

This project requires a data set as the context and target text (which is short text: between 500 and 1000 tokens).

In the code the name of the Context text is cntText and the name of target text is shortTxt. The main part of the program consists of two lines of code:

wake = Wake.wake(cntTxt , use_PreTrain_Model, word2vec_param, model_add) key = wake.keyword_EXT(shortTxt,numKey)

word2vec_param is a tuple contains parameters for traning Word2vec: (window_size, min_count) use_PreTrain_Model is a binary variable that indicates whether the pre-trained model is being used: if use_PreTrain_Model=1 -> using pretrain Model model_add is the address of pretrain model that can be empty

Example

In this project, text keywords are automatically extracted based on its context. For example for the following input text:

وزرای امور خارجه آمریکا و عربستان در پایان سفر مایک پامپئو به ریاض در کنفرانسی مطبوعاتی تاکید کردند که محور گفت وگوهایشان ایران و `` مقابله با سیاست های ایران در منطقه '' بوده است . به گزارش ایسنا ، به نقل از شبکه اسکای نیوز عربی ، مایک پامپئو ، وزیر خارجه جدید آمریکا در این کنفرانس مطبوعاتی گفت : ما شراکت ویژه ای با عربستان داریم که این شراکت و همکاری در حال گسترش است . دیدارهای بسیار خوبی با همتای عربستانی خود و نیز پادشاه و دیگر مسئولان این کشور داشتم . رئیس جمهور ترامپ بسیار خوشحال می شود میزبان پادشاه عربستان و مسئولان اقتصادی این کشور در کاخ سفید باشد . وزیر امور خارجه آمریکا ادامه داد : امنیت عربستان یک اولویت اصلی برای ایالات متحده است و ما با عربستان کار می کنیم تا امنیت در این کشور ارتقا یابد . پامپئو در بخش دیگری از سخنانش به مساله ایران پرداخت و مدعی شد : ایران باعث ایجاد ناامنی و بی ثباتی در منطقه و بزرگترین حامی تروریسم در جهان است . این کشور با شبه نظامیان وابسته به خود در سوریه ، عراق و یمن و نیز با حملات سایبری به ایجاد ناامنی دست می زند . باید بگویم برخلاف دولت قبلی ایالات متحده ما دست بسته نمی نشینیم . اطمینان می دهم ایران هیچگاه به سلاح اتمی دست نخواهد یافت . او ادامه داد : درباره توافق هسته ای با ایران نیز باید بگویم رفتار ایران بعد از این توافق بدتر شده است . همانگونه که رئیس جمهور ترامپ گفته است این توافق باید اصلاح شود و اگر اصلاح نشود و یا قابل اصلاح نباشد ما از آن خارج می شویم . پامپئو ادامه داد : باید جلوی اقدامات ایران از جمله کمک به حوثی ها گرفته شود . حوثی ها با پرتاب موشک و نیز به خطر انداختن امنیت دریانوردی ، عربستان و امنیت منطقه را تهدید می کنند . ما به عربستان در مقابله با این تهدیدات کمک خواهیم کرد . همزمان نیز مذاکرات با نماینده سازمان ملل در یمن را پی می گیریم تا اوضاع در یمن که باعث ظهور و رشد القاعده شده ، وخیم تر نشود . خطر علیه منطقه یقینا تهدید علیه ایالات متحده است . وزیر امور خارجه آمریکا به سفر ترامپ به عربستان نیز اشاره کرد و گفت : سفر ترامپ به منطقه یک سفر تاریخی بود که در آن یک سازمان مبارزه با تروریسم تشکیل شد . ما متعهد به پیگیری اقداماتمان در این راستا هستیم البته خاورمیانه و شرکایمان نباید منتظر آمریکا بمانند و اطمینان داریم که عربستان در مبارزه با تروریسم پیش قراول دیگر کشورها خواهد بود . مایک پامپئو در پایان سخنان خود با ستایش از اقدامات اصلاحی ولیعهد عربستان ، به چشم انداز 2030 این کشور اشاره کرد و گفت که ایالات متحده آمریکا حامی برنامه های محمد بن سلمان ، ولیعهد عربستان است و اصلاحات ایجاد شده در این کشور به ویژه در زمینه حقوق زنان را ستایش می کند . عادل الجبیر ، وزیر امور خارجه عربستان نیز به عنوان میزبان همتای آمریکایی خود در آغاز این کنفرانس مطبوعاتی گفت که با پامپئو توافق کرده تا مانع `` خواسته های روزافزون ایران در منطقه '' شود . وی گفت : دو کشور بر سر مبارزه با `` اقدامات بی ثبات کننده ایران '' در منطقه توافق دارند . ما از سیاست های آمریکا در قبال ایران به طور کامل حمایت می کنیم که از جمله آن سیاست های ایالات متحده در قبال برنامه هسته ای ایران است .

The 10 keywords extracted by the model are:

('ایران', 4.05292034373375)

('عربستان', 4.193905604785485)

('کشور', 4.7680901504699245)

('آمریکا', 4.941453550088568)

('منطقه', 4.949306749139798)

('ایالات', 5.365563238340798)

('متحده', 5.444792335101005)

('توافق', 5.479569006927752)

('خارجه', 5.616200457615028)

('ترامپ', 5.829934633246103)

Note

In this model, lower score means higher priority.

Reference:

Implemented article

Owner
Omid Hajipoor
Ph.D. Student, NLP Engineer
Omid Hajipoor
無料で使える中品質なテキスト読み上げソフトウェア、VOICEVOXの音声合成エンジン

VOICEVOX ENGINE VOICEVOXの音声合成エンジン。 実態は HTTP サーバーなので、リクエストを送信すればテキスト音声合成できます。 API ドキュメント VOICEVOX ソフトウェアを起動した状態で、ブラウザから

Hiroshiba 3 Jul 05, 2022
HF's ML for Audio study group

Hugging Face Machine Learning for Audio Study Group Welcome to the ML for Audio Study Group. Through a series of presentations, paper reading and disc

Vaibhav Srivastav 110 Jan 01, 2023
ADCS - Automatic Defect Classification System (ADCS) for SSMC

Table of Contents Table of Contents ADCS Overview Summary Operator's Guide Demo System Design System Logic Training Mode Production System Flow Folder

Tam Zher Min 2 Jun 24, 2022
2021 AI CUP Competition on Traditional Chinese Scene Text Recognition - Intermediate Contest

繁體中文場景文字辨識 程式碼說明 組別:這就是我 成員:蔣明憲 唐碩謙 黃玥菱 林冠霆 蕭靖騰 目錄 環境套件 安裝方式 資料夾布局 前處理-製作偵測訓練註解檔 前處理-製作分類訓練樣本 part.py : 從 json 裁切出分類訓練樣本 Class.py : 將切出來的樣本按照文字分類到各資料夾

HuanyueTW 3 Jan 14, 2022
SpikeX - SpaCy Pipes for Knowledge Extraction

SpikeX is a collection of pipes ready to be plugged in a spaCy pipeline. It aims to help in building knowledge extraction tools with almost-zero effort.

Erre Quadro Srl 384 Dec 12, 2022
Simple text to phones converter for multiple languages

Phonemizer -- foʊnmaɪzɚ The phonemizer allows simple phonemization of words and texts in many languages. Provides both the phonemize command-line tool

CoML 762 Dec 29, 2022
This repository will contain the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields Project Page | Paper | Supplementary | Video | Slides | Blog | Talk If

1.1k Dec 27, 2022
Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision

Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Chenyang Huang 37 Jan 04, 2023
Open source code for AlphaFold.

AlphaFold This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP

DeepMind 9.7k Jan 02, 2023
Longformer: The Long-Document Transformer

Longformer Longformer and LongformerEncoderDecoder (LED) are pretrained transformer models for long documents. ***** New December 1st, 2020: Longforme

AI2 1.6k Dec 29, 2022
A natural language modeling framework based on PyTorch

Overview PyText is a deep-learning based NLP modeling framework built on PyTorch. PyText addresses the often-conflicting requirements of enabling rapi

Facebook Research 6.4k Dec 27, 2022
Conditional probing: measuring usable information beyond a baseline

Conditional probing: measuring usable information beyond a baseline

John Hewitt 20 Dec 15, 2022
sangha, pronounced "suhng-guh", is a social networking, booking platform where students and teachers can share their practice.

Flask React Project This is the backend for the Flask React project. Getting started Clone this repository (only this branch) git clone https://github

Courtney Newcomer 17 Sep 29, 2021
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

TOPSIS implementation in Python Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) CHING-LAI Hwang and Yoon introduced TOPSIS

Hamed Baziyad 8 Dec 10, 2022
WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

Google Research Datasets 740 Dec 24, 2022
Bu Chatbot, Konya Bilim Merkezi Yen için tasarlanmış olan bir projedir.

chatbot Bu Chatbot, Konya Bilim Merkezi Yeni Ufuklar Sergisi için 2021 Yılında tasarlanmış olan bir projedir. Chatbot Python ortamında yazılmıştır. Sö

Emre Özkul 1 Feb 23, 2022
NLP applications using deep learning.

NLP-Natural-Language-Processing NLP applications using deep learning like text generation etc. 1- Poetry Generation: Using a collection of Irish Poem

KASHISH 1 Jan 27, 2022
SASE : Self-Adaptive noise distribution network for Speech Enhancement with heterogeneous data of Cross-Silo Federated learning

SASE : Self-Adaptive noise distribution network for Speech Enhancement with heterogeneous data of Cross-Silo Federated learning We propose a SASE mode

Tower 1 Nov 20, 2021
DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time

DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time. While it efficiently searches the answers out of 60 billion phrases in Wikipedia, it is also v

Jinhyuk Lee 543 Jan 08, 2023
🚀Clone a voice in 5 seconds to generate arbitrary speech in real-time

English | 中文 Features 🌍 Chinese supported mandarin and tested with multiple datasets: aidatatang_200zh, magicdata, aishell3, data_aishell, and etc. ?

Vega 25.6k Dec 31, 2022