Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

Related tags

Text Data & NLPTOPSIS
Overview

TOPSIS implementation in Python

Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) CHING-LAI Hwang and Yoon introduced TOPSIS in 1981 in their Multiple Criteria Decision Making (MCDM) and Multiple Criteria Decision Analysis (MCDA) methods [1]. TOPSIS strives to minimize the distance between the positive ideal solution and the chosen alternative, as well as to maximize the distance between the negative ideal solution and the chosen alternative. [2]. TOPSIS, in a nutshell, aids researchers to rank alternative items by identifying some criteria. We present alternative information and the criteria for each in the following decision matrix: image It is possible that some criteria are more effective than others. Therefore, some weights are given to their importance. It is required that the summation of n weights equals one.

image

Jahanshahloo et al, (2006), explained the TOPSIS in six main phases as follows:

1) Normalized Decision Matrix

It is the first phase of TOPSIS to normalize the process. Researchers have proposed different types of normalization. In this section, we identify the most commonly used normalization methods. The criterion or attribute is divided into two categories, cost and benefit. There are two formulas for normalizing the decision matrix for each normalization method: one for benefit criteria and one for cost criteria. According to Vafaei et al (2018), some of these normalization methods include:

image

All of the above normalization methods were coded in Normalization.py. Also, there is another related file called Normalized_Decision_Matrix.py, implementing the normalization method on the decision matrix. Now we have anormalized decision matrix as follows:

image

2) Weighted Normalized Decision Matrix

The Weighted Normalized Decision Matrix is calculated by multiplying the normalized decision matrix by the weights.

image

This multiplication is performed in the Weighted_Normalized_Decision_Matrix.py file. Now, we have a weighted normalized decision matrix as follows:

image

3) Ideal Solutions

As was mentioned, TOPSIS strives to minimize the distance between the positive ideal solution and the chosen alternative, as well as to maximize the distance between the negative ideal solution and the chosen alternative. But what are the positive and negative ideal solutions?

If our attribute or criterion is profit-based, positive ideal solution (PIS) and negative ideal solution (NIS) are:

image

If our attribute or criterion is cost-based, positive ideal solution (PIS) and negative ideal solution (NIS) are:

image

In our code, ideal solutions are calculated in Ideal_Solution.py.

  1. Separation measures It is necessary to introduce a measure that can measure how far alternatives are from the ideal solutions. Our measure comprise two main sections: The separation of each alternative from the PIS is calculated as follows:

image

Also, the separation of each alternative from the NIS is calculated as follows:

image

  1. Closeness to the Ideal Solution Now that the distance between ideal solutions and alternatives has been calculated, we rank our alternatives according to how close they are to ideal solutions. The distance measure is calculated by the following formula:

image

It is clear that :

image

6) Ranking

Now, alternatives are ranked in decreasing order based on closeness to the ideal solution. Both of (5) and (6) are calculated in Distance_Between_Ideal_and_Alternatives.py.

7) TOPSIS

In this section, all of the previous .py files are employed and utilized in an integrated way.

References

  1. Hwang, C.L.; Yoon, K. (1981). Multiple Attribute Decision Making: Methods and Applications. New York: Springer-Verlag.: https://www.springer.com/gp/book/9783540105589
  2. Assari, A., Mahesh, T., & Assari, E. (2012b). Role of public participation in sustainability of historical city: usage of TOPSIS method. Indian Journal of Science and Technology, 5(3), 2289-2294.
  3. Jahanshahloo, G.R., Lotfi, F.H. and Izadikhah, M., 2006. An algorithmic method to extend TOPSIS for decision-making problems with interval data. Applied mathematics and computation, 175(2), pp.1375-1384.
  4. Vafaei, N., Ribeiro, R.A. and Camarinha-Matos, L.M., 2018. Data normalization techniques in decision making: case study with TOPSIS method. International journal of information and decision sciences, 10(1), pp.19-38.
Owner
Hamed Baziyad
Hamed Baziyad
PyTorch implementation of Tacotron speech synthesis model.

tacotron_pytorch PyTorch implementation of Tacotron speech synthesis model. Inspired from keithito/tacotron. Currently not as much good speech quality

Ryuichi Yamamoto 279 Dec 09, 2022
An official implementation for "CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval"

The implementation of paper CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval. CLIP4Clip is a video-text retrieval model based

ArrowLuo 456 Jan 06, 2023
Creating an Audiobook (mp3 file) using a Ebook (epub) using BeautifulSoup and Google Text to Speech

epub2audiobook Creating an Audiobook (mp3 file) using a Ebook (epub) using BeautifulSoup and Google Text to Speech Input examples qual a pasta do seu

7 Aug 25, 2022
Simplified diarization pipeline using some pretrained models - audio file to diarized segments in a few lines of code

simple_diarizer Simplified diarization pipeline using some pretrained models. Made to be a simple as possible to go from an input audio file to diariz

Chau 65 Dec 30, 2022
CVSS: A Massively Multilingual Speech-to-Speech Translation Corpus

CVSS: A Massively Multilingual Speech-to-Speech Translation Corpus CVSS is a massively multilingual-to-English speech-to-speech translation corpus, co

Google Research Datasets 118 Jan 06, 2023
NLP Text Classification

多标签文本分类任务 近年来随着深度学习的发展,模型参数的数量飞速增长。为了训练这些参数,需要更大的数据集来避免过拟合。然而,对于大部分NLP任务来说,构建大规模的标注数据集非常困难(成本过高),特别是对于句法和语义相关的任务。相比之下,大规模的未标注语料库的构建则相对容易。为了利用这些数据,我们可以

Jason 1 Nov 11, 2021
A combination of autoregressors and autoencoders using XLNet for sentiment analysis

A combination of autoregressors and autoencoders using XLNet for sentiment analysis Abstract In this paper sentiment analysis has been performed in or

James Zaridis 2 Nov 20, 2021
Code for the ACL 2021 paper "Structural Guidance for Transformer Language Models"

Structural Guidance for Transformer Language Models This repository accompanies the paper, Structural Guidance for Transformer Language Models, publis

International Business Machines 10 Dec 14, 2022
Host your own GPT-3 Discord bot

GPT3 Discord Bot Host your own GPT-3 Discord bot i'd host and make the bot invitable myself, however GPT3 terms of service prohibit public use of GPT3

[something hillarious here] 8 Jan 07, 2023
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform tasks on automatic speech recogniti

Soohwan Kim 26 Dec 14, 2022
Ελληνικά νέα (Python script) / Greek News Feed (Python script)

Ελληνικά νέα (Python script) / Greek News Feed (Python script) Ελληνικά English Το 2017 είχα υλοποιήσει ένα Python script για να εμφανίζει τα τωρινά ν

Loren Kociko 1 Jun 14, 2022
Making text a first-class citizen in TensorFlow.

TensorFlow Text - Text processing in Tensorflow IMPORTANT: When installing TF Text with pip install, please note the version of TensorFlow you are run

1k Dec 26, 2022
This repository contains examples of Task-Informed Meta-Learning

Task-Informed Meta-Learning This repository contains examples of Task-Informed Meta-Learning (paper). We consider two tasks: Crop Type Classification

10 Dec 19, 2022
Code for paper "Role-oriented Network Embedding Based on Adversarial Learning between Higher-order and Local Features"

Role-oriented Network Embedding Based on Adversarial Learning between Higher-order and Local Features Train python main.py --dataset brazil-flights C

wang zhang 0 Jun 28, 2022
CoSENT 比Sentence-BERT更有效的句向量方案

CoSENT 比Sentence-BERT更有效的句向量方案

苏剑林(Jianlin Su) 201 Dec 12, 2022
Utilize Korean BERT model in sentence-transformers library

ko-sentence-transformers 이 프로젝트는 KoBERT 모델을 sentence-transformers 에서 보다 쉽게 사용하기 위해 만들어졌습니다. Ko-Sentence-BERT-SKTBERT 프로젝트에서는 KoBERT 모델을 sentence-trans

Junghyun 40 Dec 20, 2022
Text Normalization(文本正则化)

Text Normalization(文本正则化) 任务描述:通过机器学习算法将英文文本的“手写”形式转换成“口语“形式,例如“6ft”转换成“six feet”等 实验结果 XGBoost + bag-of-words: 0.99159 XGBoost+Weights+rules:0.99002

Jason_Zhang 0 Feb 26, 2022
Linking data between GBIF, Biodiverse, and Open Tree of Life

GBIF-biodiverse-OpenTree Linking data between GBIF, Biodiverse, and Open Tree of Life The python scripts will rely on opentree and Dendropy. To set up

2 Oct 03, 2022
This Project is based on NLTK It generates a RANDOM WORD from a predefined list of words, From that random word it read out the word, its meaning with parts of speech , its antonyms, its synonyms

This Project is based on NLTK(Natural Language Toolkit) It generates a RANDOM WORD from a predefined list of words, From that random word it read out the word, its meaning with parts of speech , its

SaiVenkatDhulipudi 2 Nov 17, 2021
ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for reading, processing, executing, or translating structured text or binary files.

ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for reading, processing, executing, or translating structured text or binary files.

Antlr Project 13.6k Jan 05, 2023