The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing".

Overview

BMC

The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing".

BibTex entry available here.

BMC (BPF Memory Cache) is an in-kernel cache for memcached. It enables runtime, crash-safe extension of the Linux kernel to process specific memcached requests before the execution of the standard network stack. BMC does not require modification of neither the Linux kernel nor the memcached application. Running memcached with BMC improves throughput by up to 18x compared to the vanilla memcached application.

Requirements

Linux kernel v5.3 or higher is required to run BMC.

Other software dependencies are required to build BMC and Memcached-SR (see Building BMC and Building Memcached-SR).

Build instructions

Building BMC

BMC must be compiled with libbpf and other header files obtained from kernel sources. The project does not include the kernel sources, but the kernel-src-download.sh and kernel-src-prepare.sh scripts automate the download of the kernel sources and prepare them for the compilation of BMC.

These scripts require the following software to be installed:

gpg curl tar xz make gcc flex bison libssl-dev libelf-dev

The project uses llvm and clang version 9 to build BMC, but more recent versions might work as well:

llvm-9 clang-9

Note that libelf-dev is also required to build libbpf and BMC.

With the previous software installed, BMC can be built with the following:

$ ./kernel-src-download.sh
$ ./kernel-src-prepare.sh
$ cd bmc && make

After BMC has been successfully built, kernel sources can be removed by running the kernel-src-remove.sh script from the project root.

Building Memcached-SR

Memcached-SR is based on memcached v1.5.19. Building it requires the following software:

clang-9 (or gcc-9) automake libevent-dev

Either clang-9 or gcc-9 is required in order to compile memcached without linking issues. Depending on your distribution, you might also need to use the -Wno-deprecated-declarations compilation flag.

Memcached-SR can be built with the following:

$ cd memcached-sr 
$ ./autogen.sh
$ CC=clang-9 CFLAGS='-DREUSEPORT_OPT=1 -Wno-deprecated-declarations' ./configure && make

The memcached binary will be located in the memcached-sr directory.

Further instructions

TC egress hook

BMC doesn't attach the tx_filter eBPF program to the egress hook of TC, it needs to be attached manually.

To do so, you first need to make sure that the BPF is mounted, if it isn't you can mount it with the following command:

# mount -t bpf none /sys/fs/bpf/

Once BMC is running and the tx_filter program has been pinned to /sys/fs/bpf/bmc_tx_filter, you can attach it using the tc command line:

# tc qdisc add dev 
   
     clsact
   
# tc filter add dev 
   
     egress bpf object-pinned /sys/fs/bpf/bmc_tx_filter
   

After you are done using BMC, you can detach the program with these commands:

# tc filter del dev 
   
     egress
   
# tc qdisc del dev 
   
     clsact
   

And unpin the program with # rm /sys/fs/bpf/bmc_tx_filter

License

Files under the bmc directory are licensed under the GNU Lesser General Public License version 2.1.

Files under the memcached-sr directory are licensed under the BSD-3-Clause BSD license.

Cite this work

BibTex:

@inproceedings{265047,
	title        = {{BMC}: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing},
	author       = {Yoann Ghigoff and Julien Sopena and Kahina Lazri and Antoine Blin and Gilles Muller},
	year         = 2021,
	month        = apr,
	booktitle    = {18th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 21)},
	publisher    = {{USENIX} Association},
	pages        = {487--501},
	isbn         = {978-1-939133-21-2},
	url          = {https://www.usenix.org/conference/nsdi21/presentation/ghigoff}
}
Owner
Orange
Open Source by Orange
Orange
[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction

PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction International Conference on 3D Vision, 2020 Sai Sagar Jinka1, Rohan

Rohan Chacko 39 Oct 12, 2022
Taming Transformers for High-Resolution Image Synthesis

Taming Transformers for High-Resolution Image Synthesis CVPR 2021 (Oral) Taming Transformers for High-Resolution Image Synthesis Patrick Esser*, Robin

CompVis Heidelberg 3.5k Jan 03, 2023
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
BASH - Biomechanical Animated Skinned Human

We developed a method animating a statistical 3D human model for biomechanical analysis to increase accessibility for non-experts, like patients, athletes, or designers.

Machine Learning and Data Analytics Lab FAU 66 Nov 19, 2022
The project of phase's key role in complex and real NN

Phase-in-NN This is the code for our project at Princeton (co-authors: Yuqi Nie, Hui Yuan). The paper title is: "Neural Network is heterogeneous: Phas

YuqiNie-lab 1 Nov 04, 2021
Learning To Have An Ear For Face Super-Resolution

Learning To Have An Ear For Face Super-Resolution [Project Page] This repository contains demo code of our CVPR2020 paper. Training and evaluation on

50 Nov 16, 2022
Efficient Sparse Attacks on Videos using Reinforcement Learning

EARL This repository provides a simple implementation of the work "Efficient Sparse Attacks on Videos using Reinforcement Learning" Example: Demo: Her

12 Dec 05, 2021
Use Python, OpenCV, and MediaPipe to control a keyboard with facial gestures

CheekyKeys A Face-Computer Interface CheekyKeys lets you control your keyboard using your face. View a fuller demo and more background on the project

69 Nov 09, 2022
Official Implementation of DE-DETR and DELA-DETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-DETR and DELA-DETR in

Wen Wang 61 Dec 12, 2022
Accuracy Aligned. Concise Implementation of Swin Transformer

Accuracy Aligned. Concise Implementation of Swin Transformer This repository contains the implementation of Swin Transformer, and the training codes o

FengWang 77 Dec 16, 2022
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to

Mohamed Ali Souibgui 74 Jan 07, 2023
You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors

You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors In this paper, we propose a novel local descriptor-based fra

Haiping Wang 80 Dec 15, 2022
SE-MSCNN: A Lightweight Multi-scaled Fusion Network for Sleep Apnea Detection Using Single-Lead ECG Signals

SE-MSCNN: A Lightweight Multi-scaled Fusion Network for Sleep Apnea Detection Using Single-Lead ECG Signals Abstract Sleep apnea (SA) is a common slee

9 Dec 21, 2022
PoseViz – Multi-person, multi-camera 3D human pose visualization tool built using Mayavi.

PoseViz – 3D Human Pose Visualizer Multi-person, multi-camera 3D human pose visualization tool built using Mayavi. As used in MeTRAbs visualizations.

István Sárándi 79 Dec 30, 2022
PyTorch implementation of "Simple and Deep Graph Convolutional Networks"

Simple and Deep Graph Convolutional Networks This repository contains a PyTorch implementation of "Simple and Deep Graph Convolutional Networks".(http

chenm 253 Dec 08, 2022
FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction

FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction. It uses a customized encoder decoder architecture with spatio-temporal convolutions and channel ga

Tarun K 280 Dec 23, 2022
[CVPR 2022 Oral] TubeDETR: Spatio-Temporal Video Grounding with Transformers

TubeDETR: Spatio-Temporal Video Grounding with Transformers Website • STVG Demo • Paper This repository provides the code for our paper. This includes

Antoine Yang 108 Dec 27, 2022
My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control

My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control

yobi byte 29 Oct 09, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
Project for tracking occupancy in Tel-Aviv parking lots.

Ahuzat Dibuk - Tracking occupancy in Tel-Aviv parking lots main.py This module was set-up to be executed on Google Cloud Platform. I run it every 15 m

Geva Kipper 35 Nov 22, 2022