Official PyTorch implementation of "IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos", CVPRW 2021

Overview

IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos

Introduction

This repo is official PyTorch implementation of IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos (CVPRW 2021).

Directory

Root

The ${ROOT} is described as below.

${ROOT}  
|-- data  
|-- common  
|-- main  
|-- tool
|-- output  
  • data contains data loading codes and soft links to images and annotations directories.
  • common contains kernel codes for IntegralAction.
  • main contains high-level codes for training or testing the network.
  • tool contains a code to merge models of rgb_only and pose_only stages.
  • output contains log, trained models, visualized outputs, and test result.

Data

You need to follow directory structure of the data as below.

${ROOT}  
|-- data  
|   |-- Kinetics
|   |   |-- data
|   |   |   |-- frames 
|   |   |   |-- kinetics-skeleton
|   |   |   |-- Kinetics50_train.json
|   |   |   |-- Kinetics50_val.json
|   |   |   |-- Kinetics400_train.json
|   |   |   |-- Kinetics400_val.json
|   |-- Mimetics
|   |   |-- data  
|   |   |   |-- frames 
|   |   |   |-- pose_results 
|   |   |   |-- Mimetics50.json
|   |   |   |-- Mimetics400.json
|   |-- NTU
|   |   |-- data  
|   |   |   |-- frames 
|   |   |   |-- nturgb+d_skeletons
|   |   |   |-- NTU_train.json
|   |   |   |-- NTU_test.json

To download multiple files from Google drive without compressing them, try this. If you have a problem with 'Download limit' problem when tried to download dataset from google drive link, please try this trick.

* Go the shared folder, which contains files you want to copy to your drive  
* Select all the files you want to copy  
* In the upper right corner click on three vertical dots and select “make a copy”  
* Then, the file is copied to your personal google drive account. You can download it from your personal account.  

Output

You need to follow the directory structure of the output folder as below.

${ROOT}  
|-- output  
|   |-- log  
|   |-- model_dump  
|   |-- result  
|   |-- vis  
  • Creating output folder as soft link form is recommended instead of folder form because it would take large storage capacity.
  • log folder contains training log file.
  • model_dump folder contains saved checkpoints for each epoch.
  • result folder contains final estimation files generated in the testing stage.
  • vis folder contains visualized results.

Running IntegralAction

Start

  • Install PyTorch and Python >= 3.7.3 and run sh requirements.sh.
  • In the main/config.py, you can change settings of the model including dataset to use, network backbone, and input size and so on.
  • There are three stages. 1) rgb_only , 2) pose_only, and 3) rgb+pose. In the rgb_only stage, only RGB stream is trained, and in the pose_only stage, only pose stream is trained. Finally, rgb+pose stage initializes weights from the previous two stages and continue training by the pose-drive integration.

Train

1. rgb_only stage

In the main folder, run

python train.py --gpu 0-3 --mode rgb_only

to train IntegralAction in the rgb_only stage on the GPU 0,1,2,3. --gpu 0,1,2,3 can be used instead of --gpu 0-3. Then, backup the trained weights by running

mkdir ../output/model_dump/rgb_only
mv ../output/model_dump/snapshot_*.pth.tar ../output/model_dump/rgb_only/.

2. pose_only stage

In the main folder, run

python train.py --gpu 0-3 --mode pose_only

to train IntegralAction in the pose_only stage on the GPU 0,1,2,3. --gpu 0,1,2,3 can be used instead of --gpu 0-3.
Then, backup the trained weights by running

mkdir ../output/model_dump/pose_only
mv ../output/model_dump/snapshot_*.pth.tar ../output/model_dump/pose_only/.

3. rgb+pose stage

In the tool folder, run

cp ../output/model_dump/rgb_only/snapshot_29.pth.tar snapshot_29_rgb_only.pth.tar
cp ../output/model_dump/pose_only/snapshot_29.pth.tar snapshot_29_pose_only.pth.tar
python merge_rgb_only_pose_only.py
mv snapshot_0.pth.tar ../output/model_dump/.

In the main folder, run

python train.py --gpu 0-3 --mode rgb+pose --continue

to train IntegralAction in the rgb+pose stage on the GPU 0,1,2,3. --gpu 0,1,2,3 can be used instead of --gpu 0-3.

Test

Place trained model at the output/model_dump/. Choose the stage you want to test from one of [rgb_only, pose_only, rgb+pose].

In the main folder, run

python test.py --gpu 0-3 --mode $STAGE --test_epoch 29

to test IntegralAction in $STAGE stage (should be one of [rgb_only, pose_only, rgb+pose]) on the GPU 0,1,2,3 with 29th epoch trained model. --gpu 0,1,2,3 can be used instead of --gpu 0-3.

Results

Here I report the performance of the IntegralAction.

Kinetics50

  • Download IntegralAction trained on [Kinetics50].
  • Kinetics50 is a subset of Kinetics400. It mainly contains videos with human motion-related action classes, sampled from Kinetics400.
(base) mks0601:~/workspace/IntegralAction/main$ python test.py --gpu 5-6 --mode rgb+pose --test_epoch 29
>>> Using GPU: 5,6
04-15 11:48:25 Creating dataset...
loading annotations into memory...
Done (t=0.01s)
creating index...
index created!
04-15 11:48:25 Load checkpoint from ../output/model_dump/snapshot_29.pth.tar
04-15 11:48:25 Creating graph...
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 773/773 [03:09<00:00,  5.11it/s]
Evaluation start...
Top-1 accuracy: 72.2087
Top-5 accuracy: 92.2735
Result is saved at: ../output/result/kinetics_result.json

Mimetics

  • Download IntegralAction trained on [Kinetics50].
  • Kinetics50 is a subset of Kinetics400. It mainly contains videos with human motion-related action classes, sampled from Kinetics400.
  • Note that Mimetics is used only for the testing purpose.
(base) mks0601:~/workspace/IntegralAction/main$ python test.py --gpu 5-6 --mode rgb+pose --test_epoch 29
>>> Using GPU: 5,6
04-15 11:52:20 Creating dataset...
loading annotations into memory...
Done (t=0.01s)
creating index...
index created!
04-15 11:52:20 Load checkpoint from ../output/model_dump/snapshot_29.pth.tar
04-15 11:52:20 Creating graph...
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 187/187 [02:14<00:00,  4.93it/s]
Evaluation start...
Top-1 accuracy: 26.5101
Top-5 accuracy: 50.5034
Result is saved at: ../output/result/mimetics_result.json

Reference

@InProceedings{moon2021integralaction,
  title={IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos},
  author={Moon, Gyeongsik and Kwon, Heeseung and Lee, Kyoung Mu and Cho, Minsu},
  booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition Workshop (CVPRW)}, 
  year={2021}
}
Owner
Gyeongsik Moon
Postdoc in CVLAB, SNU, Korea
Gyeongsik Moon
Official repository for "Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring".

RNN-MBP Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring (AAAI-2022) by Chao Zhu, Hang Dong, Jinshan Pan

SIV-LAB 22 Aug 31, 2022
LyaNet: A Lyapunov Framework for Training Neural ODEs

LyaNet: A Lyapunov Framework for Training Neural ODEs Provide the model type--config-name to train and test models configured as those shown in the pa

Ivan Dario Jimenez Rodriguez 21 Nov 21, 2022
NLU Dataset Diagnostics

NLU Dataset Diagnostics This repository contains data and scripts to reproduce the results from our paper: Aarne Talman, Marianna Apidianaki, Stergios

Language Technology at the University of Helsinki 1 Jul 20, 2022
J.A.R.V.I.S is an AI virtual assistant made in python.

J.A.R.V.I.S is an AI virtual assistant made in python. Running JARVIS Without Python To run JARVIS without python: 1. Head over to our installation pa

somePythonProgrammer 16 Dec 29, 2022
Adversarial examples to the new ConvNeXt architecture

Adversarial examples to the new ConvNeXt architecture To get adversarial examples to the ConvNeXt architecture, run the Colab: https://github.com/stan

Stanislav Fort 19 Sep 18, 2022
FairFuzz: AFL extension targeting rare branches

FairFuzz An AFL extension to increase code coverage by targeting rare branches. FairFuzz has a particular advantage on programs with highly nested str

Caroline Lemieux 222 Nov 16, 2022
Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)

Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021) This repository is the official PyTorc

Jingyun Liang 139 Dec 29, 2022
Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech

EdiTTS: Score-based Editing for Controllable Text-to-Speech Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech. Au

Neosapience 98 Dec 25, 2022
PyTorch implementation of our paper: Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition

Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition, arxiv This is a PyTorch implementation of our paper. 1. Re

DamoCV 11 Nov 19, 2022
Reinfore learning tool box, contains trpo, a3c algorithm for continous action space

RL_toolbox all the algorithm is running on pycharm IDE, or the package loss error may exist. implemented algorithm: trpo a3c a3c:for continous action

yupei.wu 44 Oct 10, 2022
Reinforcement Learning for the Blackjack

Reinforcement Learning for Blackjack Author: ZHA Mengyue Math Department of HKUST Problem Statement We study playing Blackjack by reinforcement learni

Dolores 3 Jan 24, 2022
Code for "LASR: Learning Articulated Shape Reconstruction from a Monocular Video". CVPR 2021.

LASR Installation Build with conda conda env create -f lasr.yml conda activate lasr # install softras cd third_party/softras; python setup.py install;

Google 157 Dec 26, 2022
Llvlir - Low Level Variable Length Intermediate Representation

Low Level Variable Length Intermediate Representation Low Level Variable Length

Michael Clark 2 Jan 24, 2022
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

248 Dec 04, 2022
An implementation for the loss function proposed in Decoupled Contrastive Loss paper.

Decoupled-Contrastive-Learning This repository is an implementation for the loss function proposed in Decoupled Contrastive Loss paper. Requirements P

Ramin Nakhli 71 Dec 04, 2022
Official PyTorch implementation of the paper Image-Based CLIP-Guided Essence Transfer.

TargetCLIP- official pytorch implementation of the paper Image-Based CLIP-Guided Essence Transfer This repository finds a global direction in StyleGAN

Hila Chefer 221 Dec 13, 2022
VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech

VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech Jaehyeon Kim, Jungil Kong, and Juhee Son In our rece

Jaehyeon Kim 1.7k Jan 08, 2023
Explainable Zero-Shot Topic Extraction

Zero-Shot Topic Extraction with Common-Sense Knowledge Graph This repository contains the code for reproducing the results reported in the paper "Expl

D2K Lab 56 Dec 14, 2022
Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer

ConSERT Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer Requirements torch==1.6.0

Yan Yuanmeng 478 Dec 25, 2022
Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm

Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetu

3 Dec 05, 2022