Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.

Overview

mtomo

Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. And, Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.

1. Environment

  1. Docker 20.10.5, build 55c4c88

2. Model optimization environment to be built

  1. Ubuntu 20.04 x86_64
  2. CUDA 11.2
  3. cuDNN 8.1
  4. TensorFlow v2.5.0-rc1 (MediaPipe Custom OP, FlexDelegate, XNNPACK enabled)
  5. tflite_runtime v2.5.0-rc1 (MediaPipe Custom OP, FlexDelegate, XNNPACK enabled)
  6. edgetpu-compiler
  7. flatc 1.12.0
  8. TensorRT cuda11.1-trt7.2.3.4-ga-20210226
  9. PyTorch 1.8.1+cu112
  10. TorchVision 0.9.1+cu112
  11. TorchAudio 0.8.1
  12. OpenVINO 2021.3.394
  13. tensorflowjs
  14. coremltools
  15. onnx
  16. tf2onnx
  17. tensorflow-datasets
  18. openvino2tensorflow
  19. tflite2tensorflow
  20. onnxruntime
  21. onnx-simplifier
  22. MXNet
  23. gdown
  24. OpenCV 4.5.2-openvino
  25. Intel-Media-SDK
  26. Intel iHD GPU (iGPU) support

3. Usage

3-1. Docker Hub

https://hub.docker.com/repository/docker/pinto0309/mtomo/tags?page=1&ordering=last_updated

$ xhost +local: && \
  docker run -it --rm \
    --gpus all \
    -v `pwd`:/home/user/workdir \
    -v /tmp/.X11-unix/:/tmp/.X11-unix:rw \
    --device /dev/video0:/dev/video0:mwr \
    --net=host \
    -e LIBVA_DRIVER_NAME=iHD \
    -e XDG_RUNTIME_DIR=$XDG_RUNTIME_DIR \
    -e DISPLAY=$DISPLAY \
    --privileged \
    pinto0309/mtomo:ubuntu2004_tf2.5.0-rc1_torch1.8.1_openvino2021.3.394

3-2. Docker Build

$ git clone https://github.com/PINTO0309/mtomo.git && cd mtomo
$ docker build -t {IMAGE_NAME}:{TAG} .

3-3. Docker Run

$ xhost +local: && \
  docker run -it --rm \
    --gpus all \
    -v `pwd`:/home/user/workdir \
    -v /tmp/.X11-unix/:/tmp/.X11-unix:rw \
    --device /dev/video0:/dev/video0:mwr \
    --net=host \
    -e LIBVA_DRIVER_NAME=iHD \
    -e XDG_RUNTIME_DIR=$XDG_RUNTIME_DIR \
    -e DISPLAY=$DISPLAY \
    --privileged \
    {IMAGE_NAME}:{TAG}

4. Reference articles

  1. openvino2tensorflow
  2. tflite2tensorflow
  3. tensorflow-onnx (a.k.a tf2onnx)
  4. tensorflowjs
  5. coremltools
  6. OpenVINO
  7. onnx
  8. onnx-simplifier
  9. TensorFLow
  10. PyTorch
  11. flatbuffers (a.k.a flatc)
  12. TensorRT
  13. Intel-Media-SDK/MediaSDK - Running on GPU under docker
  14. Intel-Media-SDK/MediaSDK - Intel media stack on Ubuntu
Owner
Katsuya Hyodo
Hobby programmer. Intel Software Innovator Program member.
Katsuya Hyodo
Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation

Unseen Object Clustering: Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation Introduction In this work, we propose a new method

NVIDIA Research Projects 132 Dec 13, 2022
Object detection and instance segmentation toolkit based on PaddlePaddle.

Object detection and instance segmentation toolkit based on PaddlePaddle.

9.3k Jan 02, 2023
Flask101 - FullStack Web Development with Python & JS - From TAQWA

Task: Create a CLI Calculator Step 0: Creating Virtual Environment $ python -m

Hossain Foysal 1 May 31, 2022
StyleGAN-Human: A Data-Centric Odyssey of Human Generation

StyleGAN-Human: A Data-Centric Odyssey of Human Generation Abstract: Unconditional human image generation is an important task in vision and graphics,

stylegan-human 762 Jan 08, 2023
We have made you a wrapper you can't refuse

We have made you a wrapper you can't refuse We have a vibrant community of developers helping each other in our Telegram group. Join us! Stay tuned fo

20.6k Jan 09, 2023
NAS-FCOS: Fast Neural Architecture Search for Object Detection (CVPR 2020)

NAS-FCOS: Fast Neural Architecture Search for Object Detection This project hosts the train and inference code with pretrained model for implementing

Ning Wang 180 Dec 06, 2022
Awesome Remote Sensing Toolkit based on PaddlePaddle.

基于飞桨框架开发的高性能遥感图像处理开发套件,端到端地完成从训练到部署的全流程遥感深度学习应用。 最新动态 PaddleRS 即将发布alpha版本!欢迎大家试用 简介 PaddleRS是遥感科研院所、相关高校共同基于飞桨开发的遥感处理平台,支持遥感图像分类,目标检测,图像分割,以及变化检测等常用遥

146 Dec 11, 2022
Interactive Terraform visualization. State and configuration explorer.

Rover - Terraform Visualizer Rover is a Terraform visualizer. In order to do this, Rover: generates a plan file and parses the configuration in the ro

Tu Nguyen 2.3k Jan 07, 2023
Official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

peng gao 42 Nov 26, 2022
CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022)

CMUA-Watermark The official code for CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022) arxiv. It is bas

50 Nov 26, 2022
Change Detection in SAR Images Based on Multiscale Capsule Network

SAR_CD_MS_CapsNet Code for the paper "Change Detection in SAR Images Based on Multiscale Capsule Network" , IEEE Geoscience and Remote Sensing Letters

Feng Gao 21 Nov 29, 2022
The repository includes the code for training cell counting applications. (Keras + Tensorflow)

cell_counting_v2 The repository includes the code for training cell counting applications. (Keras + Tensorflow) Dataset can be downloaded here : http:

Weidi 113 Oct 06, 2022
https://arxiv.org/abs/2102.11005

LogME LogME: Practical Assessment of Pre-trained Models for Transfer Learning How to use Just feed the features f and labels y to the function, and yo

THUML: Machine Learning Group @ THSS 149 Dec 19, 2022
一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

Haoyu Xu 203 Jan 03, 2023
TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffic Environments for IV 2022.

TorchGRL TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffi

XXQQ 42 Dec 09, 2022
Explicable Reward Design for Reinforcement Learning Agents [NeurIPS'21]

Explicable Reward Design for Reinforcement Learning Agents [NeurIPS'21]

3 May 12, 2022
QAT(quantize aware training) for classification with MQBench

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
Train DeepLab for Semantic Image Segmentation

Train DeepLab for Semantic Image Segmentation Martin Kersner, [email protected]

Martin Kersner 172 Dec 14, 2022
Keras Realtime Multi-Person Pose Estimation - Keras version of Realtime Multi-Person Pose Estimation project

This repository has become incompatible with the latest and recommended version of Tensorflow 2.0 Instead of refactoring this code painfully, I create

M Faber 769 Dec 08, 2022
This implementation contains the application of GPlearn's symbolic transformer on a commodity futures sector of the financial market.

GPlearn_finiance_stock_futures_extension This implementation contains the application of GPlearn's symbolic transformer on a commodity futures sector

Chengwei <a href=[email protected]"> 189 Dec 25, 2022