NAS-FCOS: Fast Neural Architecture Search for Object Detection (CVPR 2020)

Overview

NAS-FCOS: Fast Neural Architecture Search for Object Detection

This project hosts the train and inference code with pretrained model for implementing the NAS-FCOS algorithm for object detection, as presented in our paper:

NAS-FCOS: Fast Neural Architecture Search for Object Detection;
Ning Wang, Yang Gao, Hao Chen, Peng Wang, Zhi Tian, Chunhua Shen;
In: Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2020.

The full paper is available at: NAS-FCOS Paper.

Updates

  • News: Accepted by CVPR 2020. (24/02/2020)
  • Upload solver module to support self training. (06/02/2020)
  • Support RetinaNet detector in NAS module (pretrained model coming soon). (06/02/2020)
  • Update NAS head module, config files and pretrained model links. (07/01/2020)

Required hardware

We use 4 Nvidia V100 GPUs.

Installation

This NAS-FCOS implementation is based on maskrcnn-benchmark. Therefore the installation is the same as original maskrcnn-benchmark.

Please check INSTALL.md for installation instructions. You may also want to see the original README.md of maskrcnn-benchmark.

Train

The train command line on coco train:

python -m torch.distributed.launch \
    --nproc_per_node=4 \
    --master_port=1213 \
    tools/train_net.py --config-file "configs/search/R_50_NAS_retinanet.yaml"

Inference

The inference command line on coco minival split:

python -m torch.distributed.launch \
    --nproc_per_node=1 \
    tools/test_net.py --config-file "configs/search/R_50_NAS_densebox.yaml"

Please note that:

  1. If your model's name is different, please replace models/R-50-NAS.pth with your own.
  2. If you enounter out-of-memory error, please try to reduce TEST.IMS_PER_BATCH to 1.
  3. If you want to evaluate a different model, please change --config-file to its config file (in configs/search) and MODEL.WEIGHT to its weights file.

For your convenience, we provide the following trained models (more models are coming soon).

Model Multi-scale training AP (minival) AP (test-dev) Link Fetch Code
Mobile_NAS No 32.6 33.1 download 3dm9
Mobile_NAS_head No 34.4 34.7 download -
R_50_NAS No 38.5 38.9 download f88u
R_50_NAS_head No 39.5 39.8 download -
R_101_NAS Yes 42.1 42.5 download euuz
R_101_NAS_head Yes 42.8 43.0 download -
R_101_X_32x8d_NAS Yes 43.4 43.7 download 4cci

Attention: If the above model link cannot be downloaded normally, please refer to the link below. Mobile_NAS, Mobile_NAS_head, R_50_NAS, R_50_NAS_head, R_101_NAS, R_101_NAS_head R_101_X_32x8d_NAS

All results are obtained with a single model and without any test time data augmentation such as multi-scale, flipping and etc..

Contributing to the project

Any pull requests or issues are welcome.

Citations

Please consider citing our paper in your publications if the project helps your research. BibTeX reference is as follows.

@InProceedings{Wang_2020_CVPR,
    author = {Wang, Ning and Gao, Yang and Chen, Hao and Wang, Peng and Tian, Zhi and Shen, Chunhua and Zhang, Yanning},
    title = {NAS-FCOS: Fast Neural Architecture Search for Object Detection},
    booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month = {June},
    year = {2020}
}

License

For academic use, this project is licensed under the 2-clause BSD License - see the LICENSE file for details. For commercial use, please contact the authors.

Official Implementation of "DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization."

DialogLM Code for AAAI 2022 paper: DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization. Pre-trained Models We release two ve

Microsoft 92 Dec 19, 2022
Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV

Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV File YOLOv3 weight can be downloaded

Ngoc Quyen Ngo 2 Mar 27, 2022
Pure python implementation reverse-mode automatic differentiation

MiniGrad A minimal implementation of reverse-mode automatic differentiation (a.k.a. autograd / backpropagation) in pure Python. Inspired by Andrej Kar

Kenny Song 76 Sep 12, 2022
Seg-Torch for Image Segmentation with Torch

Seg-Torch for Image Segmentation with Torch This work was sparked by my personal research on simple segmentation methods based on deep learning. It is

Eren Gölge 37 Dec 12, 2022
Abstractive opinion summarization system (SelSum) and the largest dataset of Amazon product summaries (AmaSum). EMNLP 2021 conference paper.

Learning Opinion Summarizers by Selecting Informative Reviews This repository contains the codebase and the dataset for the corresponding EMNLP 2021

Arthur Bražinskas 39 Jan 01, 2023
FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning

FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning (FedML) developed and maintained by Scaleout Systems. FEDn enables highly scalable cross-silo and cr

Scaleout 75 Nov 09, 2022
Code for the paper "Controllable Video Captioning with an Exemplar Sentence"

SMCG Code for the paper "Controllable Video Captioning with an Exemplar Sentence" Introduction We investigate a novel and challenging task, namely con

10 Dec 04, 2022
Deep Implicit Moving Least-Squares Functions for 3D Reconstruction

DeepMLS: Deep Implicit Moving Least-Squares Functions for 3D Reconstruction This repository contains the implementation of the paper: Deep Implicit Mo

103 Dec 22, 2022
SemiNAS: Semi-Supervised Neural Architecture Search

SemiNAS: Semi-Supervised Neural Architecture Search This repository contains the code used for Semi-Supervised Neural Architecture Search, by Renqian

Renqian Luo 21 Aug 31, 2022
Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks

Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks Setup This implementation is based on PyTorch = 1.0.0. Smal

Weilin Cong 8 Oct 28, 2022
MPI-IS Mesh Processing Library

Perceiving Systems Mesh Package This package contains core functions for manipulating meshes and visualizing them. It requires Python 3.5+ and is supp

Max Planck Institute for Intelligent Systems 494 Jan 06, 2023
Predictive Modeling on Electronic Health Records(EHR) using Pytorch

Predictive Modeling on Electronic Health Records(EHR) using Pytorch Overview Although there are plenty of repos on vision and NLP models, there are ve

81 Jan 01, 2023
Weakly Supervised Segmentation with Tensorflow. Implements instance segmentation as described in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

Weakly Supervised Segmentation with TensorFlow This repo contains a TensorFlow implementation of weakly supervised instance segmentation as described

Phil Ferriere 220 Dec 13, 2022
Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Datasets"

Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Data

2 Oct 06, 2022
Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech

EdiTTS: Score-based Editing for Controllable Text-to-Speech Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech. Au

Neosapience 98 Dec 25, 2022
PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models

Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th

Rithesh Kumar 135 Oct 27, 2022
《Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching》(CVPR 2020)

This contains the codes for cross-view geo-localization method described in: Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching, CVPR2020.

41 Oct 27, 2022
A PyTorch implementation of "Graph Wavelet Neural Network" (ICLR 2019)

Graph Wavelet Neural Network ⠀⠀ A PyTorch implementation of Graph Wavelet Neural Network (ICLR 2019). Abstract We present graph wavelet neural network

Benedek Rozemberczki 490 Dec 16, 2022
QICK: Quantum Instrumentation Control Kit

QICK: Quantum Instrumentation Control Kit The QICK is a kit of firmware and software to use the Xilinx RFSoC to control quantum systems. It consists o

81 Dec 15, 2022
Crowd-sourced Annotation of Human Motion.

Motion Annotation Tool Live: https://motion-annotation.humanoids.kit.edu Paper: The KIT Motion-Language Dataset Installation Start by installing all P

Matthias Plappert 4 May 25, 2020