Official Pytorch implementation for AAAI2021 paper (RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning)

Related tags

Deep LearningRSPNet
Overview

RSPNet

Official Pytorch implementation for AAAI2021 paper "RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning"

[Supplementary Materials]

Getting Started

Install Dependencies

All dependencies can be installed using pip:

python -m pip install -r requirements.txt

Our experiments run on Python 3.7 and PyTorch 1.6. Other versions should work but are not tested.

Transcode Videos (Optional)

This step is optional but will increase the data loading speed dramatically.

We decode the videos on the fly while training so we don't need to split frames. This makes disk IO a lot faster but increases CPU usage. This transcode step aims at reducing CPU consumed by decoding by 1) lower video resolution. 2) add more key frames.

To perform transcode, you need to have ffmpeg installed, then run:

python utils/transcode_dataset.py PATH/TO/ORIGIN_VIDEOS PATH/TO/TRANSCODED_VIDEOS

Be warned, this will use all your CPU and will take several hours (on our Intel E5-2630 *2 workstation) to complete.

Prepare Datasets

Your are expected to prepare date for pre-training (Kinetics-400 dataset) and fine-tuning (UCF101, HMDB51 and Something-something-v2 datasets). To let the scripts find datasets on your system, the recommended way is to create symbolic links in ./data directory to the actual path. We found this solution flexible.

The expected directory hierarchy is as follow:

├── data
│   ├── hmdb51
│   │   ├── metafile
│   │   │   ├── brush_hair_test_split1.txt
│   │   │   └── ...
│   │   └── videos
│   │       ├── brush_hair
│   │       │   └── *.avi
│   │       └── ...
│   ├── UCF101
│   │   ├── ucfTrainTestlist
│   │   │   ├── classInd.txt
│   │   │   ├── testlist01.txt
│   │   │   ├── trainlist01.txt
│   │   │   └── ...
│   │   └── UCF-101
│   │       ├── ApplyEyeMakeup
│   │       │   └── *.avi
│   │       └── ...
│   ├── kinetics400
│   │   ├── train_video
│   │   │   ├── answering_questions
│   │   │   │   └── *.mp4
│   │   │   └── ...
│   │   └── val_video
│   │       └── (same as train_video)
│   ├── kinetics100
│   │   └── (same as kinetics400)
│   └── smth-smth-v2
│       ├── 20bn-something-something-v2
│       │   └── *.mp4
│       └── annotations
│           ├── something-something-v2-labels.json
│           ├── something-something-v2-test.json
│           ├── something-something-v2-train.json
│           └── something-something-v2-validation.json
└── ...

Alternatively, you can change the path in config/dataset to match your system.

Build Kinetics-100 dataset (Optional)

Some of our ablation study experiments use the Kinetics-100 dataset for pre-training. This dataset is built by extract 100 classes from Kinetics-400, which has the smallest file size on the train set.

If you have Kinetics-400 available, you can build Kinetics-100 by:

python -m utils.build_kinetics_subset

This script will create symbolic links instead of copy data. It is expected to complete in a minute.

We have included a pre-built one at data/kinetics100_links and created the symbolic link data/kinetics100 that related to it. You need to have data/kinetics400 available at runtime.

Pre-training on Pretext Tasks

Now you have set up the environment. Run the following command to pre-train your models on pretext tasks.

export CUDA_VISIBLE_DEVICES=0,1,2,3
# Architecture: C3D
python pretrain.py -e exps/pretext-c3d -c config/pretrain/c3d.jsonnet
# Architecture: ResNet-18
python pretrain.py -e exps/pretext-resnet18 -c config/pretrain/resnet18.jsonnet
# Architecture: S3D-G
python pretrain.py -e exps/pretext-s3dg -c config/pretrain/s3dg.jsonnet
# Architecture: R(2+1)D
python pretrain.py -e exps/pretext-r2plus1d -c config/pretrain/r2plus1d.jsonnet

You can use kinetics100 dataset for training by editing config/pretrain/moco-train-base.jsonnet (line 13)

Action Recognition

After pre-trained on pretext tasks, these models are fine-tuned to perform action recognition task on UCF101, HMDB51 and Something-something-v2 datasets.

export CUDA_VISIBLE_DEVICES=0,1
# Dataset: UCF101
#     Architecture: C3D [email protected]=76.71%
python finetune.py -c config/finetune/ucf101_c3d.jsonnet \
                   --mc exps/pretext-c3d/model_best.pth.tar \
                   -e exps/ucf101-c3d
#     Architecture: ResNet-18 [email protected]=74.33%
python finetune.py -c config/finetune/ucf101_resnet18.jsonnet \
                   --mc exps/pretext-resnet18/model_best.pth.tar \
                   -e exps/ucf101-resnet18
#     Architecture: S3D-G [email protected]=89.9%
python finetune.py -c config/finetune/ucf101_s3dg.jsonnet \
                   --mc exps/pretext-s3dg/model_best.pth.tar \
                   -e exps/ucf101-s3dg
#     Architecture: R(2+1)D [email protected]=81.1%
python finetune.py -c config/finetune/ucf101_r2plus1d.jsonnet \
                   --mc exps/pretext-r2plus1d/model_best.pth.tar \
                   -e exps/ucf101-r2plus1d

# Dataset: HMDB51
#     Architecture: C3D [email protected]=44.58%
python finetune.py -c config/finetune/hmdb51_c3d.jsonnet \
                   --mc exps/pretext-c3d/model_best.pth.tar \
                   -e exps/hmdb51-c3d
#     Architecture: ResNet-18 [email protected]=41.83%
python finetune.py -c config/finetune/hmdb51_resnet18.jsonnet \
                   --mc exps/pretext-resnet18/model_best.pth.tar \
                   -e exps/hmdb51-resnet18
#     Architecture: S3D-G [email protected]=59.6%
python finetune.py -c config/finetune/hmdb51_s3dg.jsonnet \
                   --mc exps/pretext-s3dg/model_best.pth.tar \
                   -e exps/hmdb51-s3dg
#     Architecture: R(2+1)D [email protected]=44.6%
python finetune.py -c config/finetune/hmdb51_r2plus1d.jsonnet \
                   --mc exps/pretext-r2plus1d/model_best.pth.tar \
                   -e exps/hmdb51-r2plus1d

# Dataset: Something-something-v2
#     Architecture: C3D [email protected]=47.76%
python finetune.py -c config/finetune/smth_smth_c3d.jsonnet \
                   --mc exps/pretext-c3d/model_best.pth.tar \
                   -e exps/smthv2-c3d
#     Architecture: ResNet-18 [email protected]=44.02%
python finetune.py -c config/finetune/smth_smth_resnet18.jsonnet \
                   --mc exps/pretext-resnet18/model_best.pth.tar \
                   -e exps/smthv2-resnet18
#     Architecture: S3D-G [email protected]=55.03%
python finetune.py -c config/finetune/smth_smth_s3dg.jsonnet \
                   --mc exps/pretext-s3dg/model_best.pth.tar \
                   -e exps/smthv2-s3dg

Results and Pre-trained Models

Architecture Pre-trained dataset Pre-training epoch Pre-trained model Acc. on UCF101 Acc. on HMDB51
S3D-G Kinetics-400 1000 Download link 93.7 64.7
S3D-G Kinetics-400 200 Download link 89.9 59.6
R(2+1)D Kinetics-400 200 Download link 81.1 44.6
ResNet-18 Kinetics-400 200 Download link 74.3 41.8
C3D Kinetics-400 200 Download link 76.7 44.6

Video Retrieval

The pretrained model can also be used in searching relevant videos based on the given query video.

export CUDA_VISIBLE_DEVICES=0 # use single GPU 
python retrieval.py -c config/retrieval/ucf101_resnet18.jsonnet \
                    --mc exps/pretext-resnet18/model_best.pth.tar \
                    -e exps/retrieval-resnet18    

The video retrieval result in our paper

Architecture k=1 k=5 k=10 k=20 k=50
C3D 36.0 56.7 66.5 76.3 87.7
ResNet-18 41.1 59.4 68.4 77.8 88.7

Visualization

We further visualize the region of interest (RoI) that contributes most to the similarity score using the class activation map (CAM) technique.

export CUDA_VISIBLE_DEVICES=0,1
python visualization.py -c config/pretrain/s3dg.jsonnet \
                        --load-model exps/pretext-s3dg/model_best.pth.tar \
                        -e exps/visual-s3dg \
                        -x '{batch_size: 1}'

The cam visualization results will be plotted in png files like

Troubleshoot

  • DECORDError cannot find video stream with wanted index: -1

    Some video from Kinetics dataset does not contain a valid video stream for some unknown reason. To filter them out, run python utils/verify_video.py PATH/TO/VIDEOS, then copy the output to the blacklist config in config/dataset/kinetics{400,100}.libsonnet. You need to have ffmpeg installed.

Citation

Please cite the following paper if you feel RSPNet useful to your research

@InProceedings{chen2020RSPNet,
author = {Peihao Chen, Deng Huang, Dongliang He, Xiang Long, Runhao Zeng, Shilei Wen, Mingkui Tan, and Chuang Gan},
title = {RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning},
booktitle = {The AAAI Conference on Artificial Intelligence (AAAI)},
year = {2021}
}

Contact

For any question, please file an issue or contact

Peihao Chen: [email protected]
Deng Huang: [email protected]
Comments
  • r(2+1) d -18 pretrained model not fully reproducible

    r(2+1) d -18 pretrained model not fully reproducible

    Hi, I finetuned the given pre-trained r(2+1)d model on ucf-101 using the given finetuning code. It only achieves (76 -77%) accuracy. Can you confirm if the given model is the correct one. I use the same setup as mentioned in the readme.

    opened by fmthoker 3
  • framework image

    framework image

    hello, thank you for your great work. it's so smart idea!

    can you explain about framework image? i understand about RSP task, A-VID task is learned in 1 iteration. i think that it means 'anchor is same'. and i saw the algorithm, just sampling K clips in video V\v+, however, in paper fig 2. two clips in video, 1x clip and 2x clip 's features(green color) are going to g_a header and do contrastive learning. i think about you want to show us randomly selected speed.... is right? in real experiment, just c_i, c_j, {c_n}(K) clips in there? not 2K?

    thank you

    opened by youwantsy 2
  • The pre-training model of s3d-g model based on Imagenet and dynamics-400 data set?

    The pre-training model of s3d-g model based on Imagenet and dynamics-400 data set?

    Where can I download the pre training model of s3d-g model based on Imagenet and dynamics-400 dataset? Or can you upload it to this repository? 请问哪里可以下载到基于ImageNet和Kinetics-400数据集的S3D-G模型的预训练模型?或者请问作者可以上传一下公开吗?

    opened by LiangSiyv 2
  • Question about computational resources

    Question about computational resources

    Hi, Thanks for your wonderful paper and code. I want to know the computational resources of your experiments. 1. What and how many GPUs you use? 2. The training time of pretraining on K400 for 200 epochs. 3. The training time of finetuning on UCF101, HMDB51, Something-V2, respectively. Looking forward to your reply. Thanks.

    opened by wjn922 2
  • 'No configuration setting found for key force_n_crop'

    'No configuration setting found for key force_n_crop'

    I downloaded your S3D-G pre-trained model for my action recognition task on UCF101 but I keep getting this error:

    argument type: <class 'str'> Setting ulimit -n 8192 world_size=1 Using dist_url=tcp://127.0.0.1:36879 Local Rank: 0 2021-12-30 07:31:39,148|INFO |Args = Args(parser=None, config='config/finetune/ucf101_s3dg.jsonnet', ext_config=[], debug=False, experiment_dir=PosixPath('exps/ucf101-s3dg'), _run_dir=PosixPath('exps/ucf101-s3dg/run_2_20211230_073138'), load_checkpoint=None, load_model=None, validate=False, moco_checkpoint='exps/pretext-s3dg/model_best_s3dg_200epoch.pth.tar', seed=None, world_size=1, _continue=False, no_scale_lr=False) 2021-12-30 07:31:39,149|INFO |cudnn.benchmark = True 2021-12-30 07:31:39,278|INFO |Config = batch_size = 4 dataset { annotation_path = "data/UCF101/ucfTrainTestlist" fold = 1 mean = [ 0.485 0.456 0.406 ] name = "ucf101" num_classes = 101 root = "data/UCF101/UCF-101" std = [ 0.229 0.224 0.225 ] } final_validate { batch_size = 4 } log_interval = 10 method = "from-scratch" model { arch = "s3dg" } model_type = "multitask" num_epochs = 50 num_workers = 8 optimizer { dampening = 0 lr = 0.005 milestones = [ 50 100 150 ] momentum = 0.9 nesterov = false patience = 10 schedule = "cosine" weight_decay = 0.0001 } spatial_transforms { color_jitter { brightness = 0 contrast = 0 hue = 0 saturation = 0 } crop_area { max = 1 min = 0.25 } gray_scale = 0 size = 224 } temporal_transforms { frame_rate = 25 size = 64 strides = [ { stride = 1 weight = 1 } ] validate { final_n_crop = 10 n_crop = 1 stride = 1 } } validate { batch_size = 4 } 2021-12-30 07:31:39,282|INFO |Using global get_model_class({'arch': 's3dg'}) 2021-12-30 07:31:39,283|INFO |Using MultiTask Wrapper 2021-12-30 07:31:39,283|WARNING |<class 'moco.split_wrapper.MultiTaskWrapper'> using groups: 1 2021-12-30 07:31:39,383|INFO |Found fc: fc with in_features: 1024 2021-12-30 07:31:42,488|INFO |Building Dataset: VID: False, Split=train 2021-12-30 07:31:42,488|INFO |Temporal transform type: clip Traceback (most recent call last): File "finetune.py", line 502, in main() File "finetune.py", line 498, in main mp.spawn(main_worker, args=(args, dist_url,), nprocs=args.world_size) File "/home/ubuntu/anaconda3/envs/ucf101/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 200, in spawn return start_processes(fn, args, nprocs, join, daemon, start_method='spawn') File "/home/ubuntu/anaconda3/envs/ucf101/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 158, in start_processes while not context.join(): File "/home/ubuntu/anaconda3/envs/ucf101/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 119, in join raise Exception(msg) Exception:

    -- Process 0 terminated with the following error: Traceback (most recent call last): File "/home/ubuntu/anaconda3/envs/ucf101/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 20, in _wrap fn(i, *args) File "/home/ubuntu/RSPNet/finetune.py", line 452, in main_worker engine = Engine(args, cfg, local_rank=local_rank) File "/home/ubuntu/RSPNet/finetune.py", line 171, in init self.train_loader = self.data_loader_factory.build( File "/home/ubuntu/RSPNet/datasets/classification/init.py", line 81, in build temporal_transform = self.get_temporal_transform(split) File "/home/ubuntu/RSPNet/datasets/classification/init.py", line 276, in get_temporal_transform if tt_cfg.get_bool("force_n_crop"): File "/home/ubuntu/anaconda3/envs/ucf101/lib/python3.8/site-packages/pyhocon/config_tree.py", line 310, in get_bool string_value = self.get_string(key, default) File "/home/ubuntu/anaconda3/envs/ucf101/lib/python3.8/site-packages/pyhocon/config_tree.py", line 221, in get_string value = self.get(key, default) File "/home/ubuntu/anaconda3/envs/ucf101/lib/python3.8/site-packages/pyhocon/config_tree.py", line 209, in get return self._get(ConfigTree.parse_key(key), 0, default) File "/home/ubuntu/anaconda3/envs/ucf101/lib/python3.8/site-packages/pyhocon/config_tree.py", line 151, in _get raise ConfigMissingException(u"No configuration setting found for key {key}".format(key='.'.join(key_path[:key_index + 1]))) pyhocon.exceptions.ConfigMissingException: 'No configuration setting found for key force_n_crop'

    opened by aloma85 0
Releases(pretrained_model)
[ICCV'21] Pri3D: Can 3D Priors Help 2D Representation Learning?

Pri3D: Can 3D Priors Help 2D Representation Learning? [ICCV 2021] Pri3D leverages 3D priors for downstream 2D image understanding tasks: during pre-tr

Ji Hou 124 Jan 06, 2023
Official PyTorch code for the paper: "Point-Based Modeling of Human Clothing" (ICCV 2021)

Point-Based Modeling of Human Clothing Paper | Project page | Video This is an official PyTorch code repository of the paper "Point-Based Modeling of

Visual Understanding Lab @ Samsung AI Center Moscow 64 Nov 22, 2022
The code release of paper 'Domain Generalization for Medical Imaging Classification with Linear-Dependency Regularization' NIPS 2020.

Domain Generalization for Medical Imaging Classification with Linear Dependency Regularization The code release of paper 'Domain Generalization for Me

Yufei Wang 56 Dec 28, 2022
An University Project of Quera Web Crawling.

WebCrawlerProject An University Project of Quera Web Crawling. خزشگر اینستاگرام در این پروژه شما باید با استفاده از کتابخانه های زیر یک خزشگر اینستاگر

Mahdi 3 Aug 12, 2022
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
This is an official implementation for "DeciWatch: A Simple Baseline for 10x Efficient 2D and 3D Pose Estimation"

DeciWatch: A Simple Baseline for 10× Efficient 2D and 3D Pose Estimation This repo is the official implementation of "DeciWatch: A Simple Baseline for

117 Dec 24, 2022
PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020).

Scaffold-Federated-Learning PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020). Environment numpy=

KI 30 Dec 29, 2022
A simple but complete full-attention transformer with a set of promising experimental features from various papers

x-transformers A concise but fully-featured transformer, complete with a set of promising experimental features from various papers. Install $ pip ins

Phil Wang 2.3k Jan 03, 2023
U2-Net: Going Deeper with Nested U-Structure for Salient Object Detection

The code for our newly accepted paper in Pattern Recognition 2020: "U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection."

Xuebin Qin 6.5k Jan 09, 2023
Some useful blender add-ons for SMPL skeleton's poses and global translation.

Blender add-ons for SMPL skeleton's poses and trans There are two blender add-ons for SMPL skeleton's poses and trans.The first is for making an offli

犹在镜中 154 Jan 04, 2023
Styleformer - Official Pytorch Implementation

Styleformer -- Official PyTorch implementation Styleformer: Transformer based Generative Adversarial Networks with Style Vector(https://arxiv.org/abs/

Jeeseung Park 159 Dec 12, 2022
Self-Supervised CNN-GCN Autoencoder

GCNDepth Self-Supervised CNN-GCN Autoencoder GCNDepth: Self-supervised monocular depth estimation based on graph convolutional network To be published

53 Dec 14, 2022
[ICRA2021] Reconstructing Interactive 3D Scene by Panoptic Mapping and CAD Model Alignment

Interactive Scene Reconstruction Project Page | Paper This repository contains the implementation of our ICRA2021 paper Reconstructing Interactive 3D

97 Dec 28, 2022
Implementation of Geometric Vector Perceptron, a simple circuit for 3d rotation equivariance for learning over large biomolecules, in Pytorch. Idea proposed and accepted at ICLR 2021

Geometric Vector Perceptron Implementation of Geometric Vector Perceptron, a simple circuit with 3d rotation equivariance for learning over large biom

Phil Wang 59 Nov 24, 2022
Simple tutorials on Pytorch DDP training

pytorch-distributed-training Distribute Dataparallel (DDP) Training on Pytorch Features Easy to study DDP training You can directly copy this code for

Ren Tianhe 188 Jan 06, 2023
PyTorch code of paper "LiVLR: A Lightweight Visual-Linguistic Reasoning Framework for Video Question Answering"

LiVLR-VideoQA We propose a Lightweight Visual-Linguistic Reasoning framework (LiVLR) for VideoQA. The overview of LiVLR: Evaluation on MSRVTT-QA Datas

JJ Jiang 7 Dec 30, 2022
Public Models considered for emotion estimation from EEG

Emotion-EEG Set of models for emotion estimation from EEG. Composed by the combination of two deep-learing models learning together (RNN and CNN) with

Victor Delvigne 21 Dec 23, 2022
MAME is a multi-purpose emulation framework.

MAME's purpose is to preserve decades of software history. As electronic technology continues to rush forward, MAME prevents this important "vintage" software from being lost and forgotten.

Michael Murray 6 Oct 25, 2020
Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging"

Deep Optics for Single-shot High-dynamic-range Imaging Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging" CVPR, 2

Stanford Computational Imaging Lab 40 Dec 12, 2022
A PyTorch implementation of SIN: Superpixel Interpolation Network

SIN: Superpixel Interpolation Network This is is a PyTorch implementation of the superpixel segmentation network introduced in our PRICAI-2021 paper:

6 Sep 28, 2022